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Abstract. Forest change detection is crucial for sustainable forest management. The changes in
the forest area due to deforestation (such as wild fires or logging due to development activities)
or afforestation alter the total forest area. Additionally, it impacts the available stock for com-
mercial purposes, climate change due to carbon emissions, and biodiversity of the forest habitat
estimations, which are essential for disaster management and policy making. In recent years,
foresters have relied on hand-crafted features or bi-temporal change detection methods to detect
change in the remote sensing imagery to estimate the forest area. Due to manual processing
steps, these methods are fragile and prone to errors and can generate inaccurate (i.e., under
or over) segmentation results. In contrast to traditional methods, we present AI-ForestWatch,
an end to end framework for forest estimation and change analysis. The proposed approach uses
deep convolution neural network-based semantic segmentation to process multi-spectral space-
borne images to quantitatively monitor the forest cover change patterns by automatically
extracting features from the dataset. Our analysis is completely data driven and has been per-
formed using extended (with vegetation indices) Landsat-8 multi-spectral imagery from 2014 to
2020. As a case study, we estimated the forest area in 15 districts of Pakistan and generated forest
change maps from 2014 to 2020, where major afforestation activity is carried out during this
period. Our critical analysis shows an improvement of forest cover in 14 out of 15 districts. The
AI-ForestWatch framework along with the associated dataset will be made public upon publi-
cation so that it can be adapted by other countries or regions. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.JRS.15.024518]
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1 Introduction

Earth’s forests are under significant pressure of degradation due to human development activities
and natural disasters. Owing to this, the deforestation remains one of the most intractable
environmental problems of today. About one third of the size (around 13 million hectares)
of the world’s global forest area has disappeared.1 The forest area reduction has various adverse
effects. First, forests are carbon dioxide sinks that decrease greenhouse gases in the atmosphere.
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Second, deforestation affects biological diversity, forest habitat, and increases soil erosion.
Despite continuous efforts by the world community to curb deforestation, it continues unrelent-
ing in the world, posing a serious threat to human livelihoods, eco-systems, and global climate.
There is an urgent need to curb deforestation using automated techniques and tools to detect
changes more frequently in the forests for sustainable management of forest inventory.

Historically, the forests are monitored by manual and/or aerial field surveys. These surveys
are time-consuming and requires a lot of financial and manpower resources. Due to this, these
surveys are conducted after multiple years and in case of developing or under-developed coun-
tries after several years. To automate the forest inventory and data management processing, the
Food and Agriculture Organization of the United Nations developed an open source tool Open
Foris.2 However, field workers are still required to manually collect the data from forest loca-
tions, which are later processed automatically. In the context of automating the monitoring proc-
ess, there are number of existing approaches that provide a solution to monitor forests either
globally3–5 or regionally6–8 using remote sensing imagery. However, these approaches are limited
to bi-temporal change detection or uses hand crafted feature extraction for statistical machine
learning techniques to detect changes. The statistical machine learning algorithms are not
designed to process high-dimensionality data and huge amount of training samples generated
by the remote sensors. In contrast to statistical machine learning algorithms, deep learning-based
algorithms can easily manage this huge amount of data due to parallelism offered by the graphi-
cal processing units. Furthermore, with the advances in remote sensing and artificial intelligence
fields, the whole forest estimation and change detection pipeline can be completely automated.
Specifically, this automated chain will be very useful for countries with limited resources as they
do not have to rely on expensive tools and surveys to get initial estimates of forest area.

In order to resolve the above-mentioned problems, in this work, we present AI-ForestWatch,
an end to end framework for continuous monitoring of the forests by utilizing advancements in
the remote sensing and neural network (NN) domains. Our approach is aimed at reducing the
financial and manpower burden on the foresters and provides a framework for initial estimations
on multi-temporal changes in the forest cover. Specifically, we aim to exploit the available spa-
tiotemporal multi-spectral Landsat satellite data to detect the forest area and changes. The main
contributions of this work are as follows.

• An end-to-end semantic segmentation-based framework has been proposed for detailed
analysis of forests cover change by utilizing the open-source frameworks (i.e., Pytorch
for implementation), tools (i.e., QGIS and Google Maps for dataset preparation), and
remote sensing data (i.e., Landsat-8).

• The analysis is completely data driven and is done by employing deep learning-based
semantic segmentation on extended Landsat-8 imagery to achieve pixel-wise labeling
of spatiotemporal multi-spectral images.

• Detailed exploration and comparison of our semantic segmentation-based approach with
other statistical machine learning algorithms (i.e., random forest, decision tree, and logistic
regression) for land cover classification has been carried out using Landsat-8 imagery as
input and generated digitized maps as ground truth.

• Finally, all the analysis including the source code and the associated dataset will be made
public on GitHub (https://github.com/dll-ncai/AI-ForestWatch) upon publication.

The remainder of this paper is organized as follows. The related literature in terms of land cover
classification and forest change detection is presented in Sec. 2. Section 3 gives a detailed explan-
ation on the study area, background, and proposed approach for forest change detection using
semantic segmentation. Section 4 summarizes the obtained results on basis of our implementation.
Section 5 analyzes the obtained results and presents detailed discussion on the AI-ForestWatch
framework. Finally, conclusions and outlook to the future work are presented in Sec. 6.

2 Related Work

The methods related to forest change detection can be divided into two categories:9–11 (1) low-
level feature-based methods and (2) object-based methods. The former employ pixel-based
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statistical inference uses multi-spectral images.12,13 They perform pixel-wise contrast compari-
son to detect changes in temporal sequence of images. Few other approaches use spectral mixture
analysis,6 vegetation index,14 and change vector analysis15-based statistical indices for analyzing
Landsat time-series imagery for forest change detection. Alternatively, object-based meth-
ods9,10,12 rely on incorporating contextual knowledge by processing similarity-based (e.g., spatial
and appearance) homogeneous pixels together.16 Typically, this is achieved by employing unsu-
pervised machine learning techniques for object-based approaches via prior segmentation to
obtain pixel clusters. These approaches perform better as they overcome spatial and spectral
variations due to noise or georeferencing effects but suffer from inaccurate (under or over) seg-
mentation results.9 Shimada et al.5 and Hansen et al.17 provided global forest cover change sta-
tistics while using ALOS PALSAR data and Landsat data, respectively. Hansen et al. provided
forest loss statistics at 30 m per pixel spatial resolution. On the other hand, Shimada et al. pro-
vided forest cover maps at a spatial resolution of 25 m until 2018.

2.1 Machine Learning-Based Forest Change Detection

Machine learning approaches based on classifiers, such as support vector machines (SVM),18 ran-
dom forest classification,19 and decision trees20 have also been employed for land cover classi-
fication in both pixel and object-based categories. For instance, Zhao et al.21 compared four
machine learning classifiers including classification and regression tree, SVM, artificial NN, and
random forest to estimate forest parameters of black locust plantations on the Loess Plateau. Qamer
et al.22 performed a study for analysis of forest cover change inWestern Himalaya, Pakistan. In this
study, six forest and eight non-forest classes are labeled using GPS-based ground truth measure-
ments, which are used to train a semiautomatic supervised classifier. They considered forest to non-
forest transition to be deforestation and dense to sparse forest to be degradation or cover loss of the
forests. The results depicted a relative loss in forest cover in the Khyber Pakhtunkhwa province
regions with annual forest cover change rate of −0.42% from 1990 to 2010. Similarly, forest cover
change study has been carried out by Souza et al.6 for the Brazilian Amazon for the 2000 to 2010
period using Landsat imagery. Image registration and spectral mixture analysis were performed as
preprocessing steps. With the main aim of generating large scale maps of forest change harnessing
the power of cloud computing, Lehmann et al.13 defined forest as tree cover with atleast 20% of
canopy reaching at least 2-m height and used National Carbon Accounting System and National
Forest Trend datasets for forest cover change detection in the Australian continent. More recently,
Voight et al.23 analyzed forest cover change using Landsat-8 imagery using a multi-layer percep-
tron for training and using annotations by manual labeling of images via Google Earth Engine to
forecast magnitude and spatial patterns of deforestation.

2.2 Forest Change Detection Using Deep Learning

In the context of deep learning, the problem of forest cover classification is divided into two
categories: one is patch-based classification that divides the full size multi-spectral images into
spatially equal sized patches, i.e., 64 × 64 pixels and a deep learning convolution NN model
assigns a single class to the whole patch based on the most dominant distribution of the
class.24,25 Deep neural networks (DNNs), such as ResNet,26 GoogleNet,27 and other similar
topologies have been shown to perform well on this problem but because a whole patch of multi-
ple pixels is labeled with just one class, they produce low-resolution under-segmented output
maps. Another method to detect forest change is pixel-wise classification using encoder–decoder
topologies.28 A similar approach is used by de Bem et al.28 to map deforestation in the Brazilian
Amazon using Landsat data. However, the study focused only on mapping the deforestation by
channel wise fusing 1 year apart images between 2017 and 2018 and between 2018 and 2019.
This technique is different from our approach as we use only 1 year images with extended veg-
etation indices for estimation of the forest cover and generate change maps for all the other years
(i.e., 2014 and 2016 to 2020). Furthermore, in this work, we use UNet-based semantic segmen-
tation on patches of the input multi-spectral Landsat-8 imagery to perform pixel-wise classifi-
cation. The advantage of using this approach is that the high resolution of the image can be fully
exploited to generate detailed forest cover maps at the same spatial resolution.
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3 Materials and Methods

3.1 Study Area

In this study, we selected the KP province, which initiated the Billion Tree Afforestation Project
(BTAP) in 2014 to restore 350,000 hectares of deforested land in northern Pakistan. BTAP
project is also a winner of the international Bonn challenge29 due to its environmental and social
impact. Before this project, the forest area of Pakistan was <2% of its total land area. This per-
centage is dangerously low when compared with other parts of the world and 25% recommen-
dation of the united Nations. This afforestation project has considerably improved the forest
cover of Pakistan, which will help to reduce the chances of floods, increase the precipitation,
provide a guard against soil erosion, and help to control the impacts of the climate change.

We performed our analysis for 15 out of 25 districts of the BTAP regions where most of the
afforestation drive was carried out. Figure 1 shows the districts used for this work as shaded
regions. The remaining districts showed <1% forest cover for the year 2015 and were not con-
sidered for this study. Additionally, Chitral and Upper-Dir districts were also not considered for
this study, since most parts of these districts are covered with snow and we were unable to label
any useful forest data points in this region. Although, the paper maps labeled forest in these
regions. However, it would only introduce noise in the training dataset and can produce wrong
segmentation results. The BTAP study regions along with their coordinates are listed in Table 1.

3.2 Methods

Figure 2 shows a detailed overview of the complete framework for forest estimation and change
detection. Landsat-8 satellite mission has a temporal resolution of 16 days. As already mentioned
that we only have the data available for year 2015 only. Hence, we start with the time series
Landsat-8 images of year 2015 [Fig. 2-(1)]. The images with <10% cloud cover are filtered,
and pixel-wise median values are calculated for each band to generate a composite image or
a clean image [Fig. 2-(2)]. The paper printed maps [Fig. 2-(3)] from the BTAP regions are taken

Fig. 1 Geographic location of the districts of BTAP regions under study. The shaded regions
indicate the 15 districts considered for this study.
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as a reference and forest/non-forest data points are labeled on the clean Landsat-8 image using
a georeferencing software [Fig. 2-(4)]. As a result a digitized map id generated [Fig. 2-(5)]
consisting of green, red and black pixels. The digitization techniques is discussed in detail in
the Sec. 3.2.1. After creating the ground truth image, training of the model is performed using
an extended (with vegetation indices explained in Sec. 3.2.2) Landsat-8 image as input. A UNet
model is trained [Fig. 2-(6)] with an 18-channel input image and the generated digitized forest
cover map [Fig. 2-(5)] of year 2015 as ground truth. After a model is trained successfully, infer-
ence is performed on the clean Landsat-8 district images of years 2014 to 2020 [Fig. 2-(7)], yield-
ing a temporal series of forest cover maps. In the final step, pixel-wise difference [Fig. 2-(8)] of
the multiple maps is carried out to generate the change map. Each step of the AI-ForestWatch
framework is discussed in detail in the following sections.

3.2.1 Datasets

Satellite images are available in analysis-ready formats from multiple sensors, i.e., MODIS,
Landsat that allow full coverage of the globe at very high spatial and temporal resolution.
The Landsat program was launched in 1972 and provides the longest continuous coverage of
the whole world through its eight satellite programs.30 In this study, we have used Landsat-8 top
of atmosphere imagery, which is available from 2013 and has a temporal resolution and spatial
resolution of 16 days and 30 m per pixel, respectively. For our explorations, we selected images
for each year with <10% cloud cover [Fig. 2-(1)] and the set of these less cloudy images were
then passed through a median filter that calculated the median value for each pixel location for
each band of the image to generate clean composites representing the land cover for 1 year. The
resulting image served as input [Fig. 2-(2)] to our framework for forest estimation and change
detection.

The foresters of the KP province maintain the land cover maps of the BTAP districts in paper
printed form. These maps are publicly available for the year 201531 with 10 labeled classes. For
our analysis, binary maps with only forest and non-forest classes are created by fusing all the

Table 1 The coordinates of the study area.

BTAP locations Coordinates (longitude, latitude)

Hangu (70.49 deg, 33.21 deg), (71.24 deg, 33.61 deg)

Karak (70.75 deg, 32.79 deg), (71.49 deg, 33.38 deg)

Kohat (71.05 deg, 33.75 deg), (72.03 deg, 33.05 deg)

Nowshehra (71.68 deg, 34.14 deg), (72.26 deg, 33.69 deg)

Battagram (72.85 deg, 34.97 deg), (73.51 deg, 34.55 deg)

Abbottabad (72.96 deg, 34.37 deg), (73.52 deg,33.81 deg)

Kohistan (72.68 deg, 35.89 deg), (73.97 deg, 34.894 deg)

Haripur (72.47 deg, 34.45 deg), (73.27 deg, 33.75 deg)

Tor-Ghar (72.71 deg, 34.78 deg), (72.94 deg, 34.33 deg)

Mansehra (72.81 deg, 35.18 deg), (74.17 deg, 34.20 deg)

Buner (72.20 deg, 34.72 deg), (72.78 deg, 34.14 deg)

Lower Dir (71.50 deg, 35.07 deg), (72.20 deg, 34.62 deg)

Malakand (71.63 deg, 34.66 deg), (72.24 deg, 34.36 deg)

Shangla (72.52 deg, 35.17 deg), (73.02 deg, 34.52 deg)

Swat (72.08 deg, 35.89 deg), (72.86 deg, 34.56 deg)
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non-forest classes together. Since, no digital version of the maps are available, we used geore-
ferencing technique to digitize these maps. This technique is discussed in detail in the next
section.

Digitization of available land cover maps for BTAP districts. The BTAP land cover
maps of year 2015 have 10 labeled classes such as alpine pasture, shrub and bushes, forests,
agriculture land, and others. Since our aim is to detect forests in these maps, all classes but forest
are fused together to form a single non-forest class. We utilized Google Earth Engine32 for
extracting Landsat-8 imagery and an open-source tool, QGIS, for performing this digitization
task [Fig. 2-(3)]. The digitization process consists of the following steps.

1. The paper printed BTAP district land cover maps were used as reference for digitization.
A sample publicly available land cover map for Battagram district, KP, is depicted in
Fig. 3. We only labeled two classes for digitization, forest and non-forest classes, by
combining all non-forest classes into one.

2. The available land cover maps were in the form of images that were georeferenced
against Landsat-8 imagery by precisely selecting distinct features such as rivers bends
and lakes, as our ground control points (GCP) in the land cover maps and Landsat-8
images.

3. Thin plate spline was utilized as the transformation to map the land cover map on top of
Landsat-8 imagery via the labeled GCPs. For all the maps digitized, the georeferencing
error was <1 × 10−13.

Fig. 2 Detailed flow diagram of the AI-ForestWatch framework. Step-(1) to step-(5) depict the
digitization process of the available year 2015 maps. Step-(6) shows the UNet training and the
step-(7) and step-(8) show the generation of forest estimation and change detection, respectively.
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4. The landcover maps were already color coded with dark green color used for forest
pixels. We converted all dark-green pixels in the digitized maps to forest labels and all
the other pixels to non-forest. This resulted in a georeferenced digitized map.

5. Since shapefiles of districts for which the maps were digizited were available, we multi-
plied all the pixels outside the district boundaries with zero to create NULL or invalid
pixels outside district boundaries. This was necessary since the labeled maps only con-
tained valid forest/non-forest pixel labels for all locations inside district boundaries, so
outer pixels must be considered invalid in the digitized map as well. It is important to
mention at this point that the actual Landsat-8 imagery is at 30 m per pixel spatial res-
olution which makes district images large in size (several thousands by several thousands
pixels in every district) but the available labeled land cover maps are low-resolution
images, which are georeferenced on the satellite images. This results in some differences
in the forest cover percentages (FC%) labeled in the forest cover maps and our digitized
maps and cannot be avoided due to the limitation of our ground truth.

The results at different steps of the above-mentioned process are shown in Fig. 4. These
digitized maps are in the form of binary images with each pixel labeled as 2 or 1 to indicate
forest/non-forest class for each pixel while 0 indicates an invalid/NULL pixel. NULL pixels
are taken for training but test scores are reported only for the forest/non-forest classes as a
binary classification task. A similar procedure is adopted for all the selected fifteen districts
of the KP BTAP districts. These digital maps are used as target annotations for the rest of our
research. It is important to mention here that no numerical assessment of the accuracy of these
maps is performed since the available ground truth, the actual land cover maps are paper
printed maps.

Fig. 3 Abbottabad land cover map of the year 2015 provided by the KP Government.31
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3.2.2 Data preprocessing

Landsat-8 satellite has a temporal resolution of 16 days, which means that every location on
Earth is captured by its multi-spectral sensor camera roughly 22 times in a year. Each of these
images has a cloud cover score, which can be used to filter them for least cloud cover. For our
analysis, we filtered images for each year with <10% cloud cover [Fig. 2-(1)] and the set of these
less cloudy images were then passed through a median filter that calculated the median value for
each pixel location for each band of the image to generate clean composites representing the land
cover for 1 year. For example, for year 2015, we first filtered the images that had <10% cloud and
then for each of the 11 original bands of these images, for every single pixel, median value was
calculated across these images to generate clean composites. The indices explained above were
calculated on these composites and appended with them afterward. This median filter allows us
to minimize the atmospheric and seasonal variation effects and generate single images that re-
present one whole year. This step was performed to generate clean images for all years from 2014
to 2020 throughout this work [Fig. 2-(2)]. For some districts, 10% cloud cover criteria was
relaxed to 20% if clear images were not available for one whole year.

Landsat-8 provides imagery in 11 spectral bands30 as presented in Table 2. Considering the
high temporal resolution of 30 m, the available spectral bands are appended with seven more

Fig. 4 The digitization steps for BTAP land cover maps into binary forest cover maps. (a) A portion
of the ground truth land cover map of district Abbottabad. GCPs being labeled are encircled in pink
color. (b) The same portion of district Abbottabad as it appears in its corresponding Landsat-8
image of 2015. Same GCPs are encircled in red color for comparison. (c) The land cover map
of Abbottabad after georeferencing the map onto the Landsat-8 image of 2015. It has also been
processed using its shape file to nullify all pixels outside the district boundary in order to extract
only valid pixels for training. The dark green pixels are color coded in the ground truth map indi-
cating forest pixels. (d) Final digitized map of district Abbotabad after converting all dark green
pixels to forest label, shown in green, and all the other non-forest classes into non-forest label,
shown in red. The NULL pixels are shown in black which includes all pixels outside the district
boundary.
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vegetation indices in the form of seven bands that are well-known to provide useful information
for land cover classification.33 Details of these appended seven indices are given below. The
Bx represents band number of the Landsat-8 image (x ¼ 1; 2; : : : ; 11), which are required to
calculate the appended index value.

Normalized difference vegetation index. Normalized difference vegetation index
(NDVI) is a commonly used index for vegetation detection.34 It exploits the chlorophyll’s
absorption property of red wavelength and reflectance of infrared wavelength. Its value is always
between −1 andþ1, where close to −1means water, around 0 means barren land and close toþ1

means healthy vegetation. It is calculated as given under

EQ-TARGET;temp:intralink-;e001;116;361NDVI ¼ B5 − B4
B5þ B4

: (1)

Enhanced vegetation index. Enhanced vegetation index (EVI) allows calculation of
enhanced vegetation index35 calculation by introducing other factors into the equation to reduce
background/atmospheric noise and saturation. It is particularly useful in areas of high canopy or
leaf density. Its range is also between −1 and þ1 with values between 0.2 and 0.8 indicating
healthy vegetation.

In terms of Landsat-8 bands, it can be calculated as

EQ-TARGET;temp:intralink-;e002;116;240EVI ¼ 2.5 � ðB5 − B4Þ
B5þ 6 � B4 − 7.5 � B2þ 1

: (2)

Soil adjusted vegetation index. Soil adjusted vegetation index (SAVI) helps to rectify the
effects of surface reflectance in cases where there is low vegetation cover in the area of interest
(<40%).36 The reflectances of red and infrared wavelengths of light affect calculation of NDVI
and SAVI modifies the original NDVI for Landsat-8 as given as follows:

EQ-TARGET;temp:intralink-;e003;116;143SAVI ¼ 1.5 � ðB5 − B4Þ
B5þ B4þ 0.5

: (3)

Modified soil adjusted vegetation index. Modified soil adjusted vegetation index
(MSAVI) accommodates for the soil brightness in NDVI in areas of low vegetation cover.37

Although, similar to SAVI, MSAVI also depends on the red (B4) and near-infrared (NIR)

Table 2 Landsat-8 spectral bands.

Band Description Wavelength (μm)

B1 Coastal/aerosol 0.433 to 0.453

B2 Visible blue 0.450 to 0.515

B3 Visible green 0.525 to 0.600

B4 Visible red 0.630 to 0.680

B5 NIR 0.845 to 0.885

B6 SWIR-1 1.56 to 1.66

B7 SWIR-2 2.10 to 2.30

B8 Panchromatic 0.50 to 0.68

B9 Cirrus 1.36 to 1.39

B10 Thermal InfraRed (TIR-1) 10.3 to 11.3

B11 TIR-2 11.5 to 12.5
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(B5) bands of the multi-spectral imagery. However, the MSAVI minimizes the effects of bare soil
on the SAVI and in the red-NIR reflectance space, the characteristics of MSAVI are different
from SAVI.38 MSAVI can be calculated using the equation given as follows:

EQ-TARGET;temp:intralink-;e004;116;699MSAVI ¼ 0.5 �
�
2 � B5þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � B5þ 1Þ2 − 8 � ðB5 − B4Þ

q �
: (4)

The work from Barati et al.39 presents the accuracy of different vegetation indices for estimation
of vegetation cover including SAVI and MSAVI. Olmos-Trujillo et al.40 used vegetation indices
(both SAVI and MSAVI) to perform a geostatistical analysis of rainfall and temperature.

Normalized difference moisture index. Normalized difference moisture index (NDMI)
is a ratio calculated using the NIR and short-wavelength infrared (SWIR) bands. It is used for
calculating the water content in vegetation41 using the following equation:

EQ-TARGET;temp:intralink-;e005;116;572NDMI ¼ B5 − B6
B5þ B6

: (5)

Normalized burn ratio. Normalized burn ratio (NBR) is used for detecting the presence
and severity of burned areas.42 The following expression is used for calculating NBR:

EQ-TARGET;temp:intralink-;e006;116;499NBR ¼ B5 − B7
B5þ B7

: (6)

Normalized burn ratio-2. Normalized burn ratio-2 (NBR2) modifies NBR to estimate
water content in burned areas and is helpful for burned areas recovery studies.43 It is calculated
as follows:

EQ-TARGET;temp:intralink-;e007;116;415NBR2 ¼ B6 − B7
B6þ B7

: (7)

For detailed exploration, different configurations with respect to number of input channels were
explored. Machine learning and deep learning algorithms were trained and tested with different
numbers of input channels to select an ideal model for the task of forest estimation and change
detection. These configurations are as follows.

• RGB. Only three red (R), green (G), and blue (B) channels of the Landsat-8 image are
provided as input. For instance, in case of RGB input configuration, the input image size
for our network is 128 × 128 × 3.

• Full-spectrum. Complete 11 bands (presented in Table 2) of the LandSat8 input are used as
input to the models for training and test. This configuration extends the number input
channels to 11 extending our input image size to 128 × 128 × 11.

• Vegetation indices. Seven indices presented in Sec. 3.2.2 are used as input to the model.
This configuration uses only the vegetation indicies hence the input image size to the net-
work is 128 × 128 × 7.

• Augmented. Vegetation indices are stacked along the full-spectrum configuration to create
an 18-channel input image. The input image size considered for this configuration is
128 × 128 × 18.

3.2.3 Forest estimation using semantic segmentation

The AI-ForestWatch framework has a two-stage forest change detection pipeline. First, pixel-
wise segmentation is performed on a trained model from Fig. 2-(6) to generate the binary forest/
non-forest cover maps [Fig. 2-(7)]. Second, pixel-wise difference [Fig. 2-(8)] between two
consecutive binary forest/non-forest cover maps generates a change map.

For pixel-wise segmentation, a UNet topology as shown in Fig. 5 with encoder and decoder44

stages is used. An encoder is a fully convolution feature extractor network. The operators used in
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this encoder are convolution, batch normalization, activation, and pooling. Four of such modules
comprise the encoder of our UNet topology, and it is known as a four-stage encoder. The other
part of the UNet, the decoder, is the mirror image of the first half, a four-stage decoder. Each
module in a decoder consists of transposed convolution operation followed by a copy-and-fuse
connection between the corresponding stages of encoder and decoder. It is followed by convo-
lution, batch normalization, activation, and pooling layers. This concatenation operation of
encoder and decoder outputs allows the decoder to utilize the features extracted by the encoder
at subsequent stages. The detailed network topology is shown in Fig. 5. The encoder (dotted
square on the left) is where the input tensor is down-sampled and encoded into a smaller dimen-
sional vector. The decoder (dotted square on the right) decodes this vector and produces full
resolution segmentation for the input image. Each decoder module concatenates its output with
the encoder output at the corresponding stage and the final decoder tensor is passed through a
convolution again followed by a softmax layer, which normalizes the output probabilities for
both classes at each pixel.

Implementation and training. The deep learning part of the proposed AI-ForestWatch
framework is implemented in Python using the PyTorch framework. The district images at
30 m per pixel spatial resolution are quite large in volume so we divide them into smaller patches
of size 256 × 256 × C pixels, where C represents the number of channels of the input image, i.e.,
C ¼ 3 for RGB, C ¼ 11 for full spectrum, C ¼ 7 for vegetation indices, and C ¼ 18 for aug-
mented input image. All district images are of different sizes, with an average image size of
4000 × 4000 × C pixels, a dataset of 3375 ðð4000

256
× 4000

256
Þ × 15Þ image patches for training and

testing are created. 80% of these patches were randomly chosen for training and while 10%
for validation and 10% for testing. Table 3 presents the number of patches used for each of
the aforementioned sets. The random selection of the patches for each set results in distinct parts
of districts going into training, validation, and test sets, so that we can capture maximum dis-
tribution. The network itself accepts inputs of size 128 × 128 × C, which are randomly cropped
from these patches at training time [Fig. 2-(6)]. Furthermore, for fast training of the model, the
encoder layers are initialized by pretrained weights of the VGG45 layers. At inference, these
patches are generated directly at 128 × 128 × C dimensions to cover the whole image in a raster
scan manner.

Fig. 5 UNet topology for the AI-ForestWatch framework to detect the forest change. The arrows
from encoder toward decoder indicate tensor outputs (feature maps) from the encoder being
copied and concatenated with the transposed convolution decoder output along the depth
dimension.
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The network has been trained using back propagation with the RMSprop optimizer. The
learning rate was scheduled to drop exponentially from an initial value of 1 × 10−06. The model
was trained for 200 epochs with batch size of 64. The loss gradients were clipped at 0.05 to avoid
exploding gradients. The whole training and testing are performed for the year 2015 since only
the annotated maps are available. We also experimented with different loss functions including
cross-entropy loss function, focal loss,46 and dice loss47 in both weighted and unweighted set-
tings. We found that the unweighted focal loss outperforms the other losses and hence it was
adopted for this work.

3.2.4 Change detection statistics

Since the change is detected between consecutive years, our metrics are also based on two
images under inspection. We combine these metrics temporally to assess the overall change
trends. When two consecutive forest cover maps generated by our classification model are sub-
tracted, we get a pixel-wise change map. Based on this, we can calculate the net change, gain,
and loss in our regions of interest. These metrics are explained as follows.

Forest cover percentage. This is calculated on the individual forest cover maps generated
by the classification model. This is the ratio of the number of forest pixels to the sum of forest and
non-forest pixels in the classified image. This gives a percentage of the forest cover in the district
under inspection but no information about change. It is calculated for all the years in the temporal
series of images as follows:

EQ-TARGET;temp:intralink-;e008;116;339FC% ¼ forest pixels

forest pixelsþ non-forest pixels
: (8)

Gain percentage. Gain percentage (GP%) is calculated on the change map and it is the ratio
of the gain pixels ð−1Þ to the total number of change map pixels (−1, 0, and 1):

EQ-TARGET;temp:intralink-;e009;116;265GP% ¼ gain pixels

gain pixelsþ loss pixelsþ no change pixels
: (9)

Loss percentage. Loss percentage (LP%) is calculated on the change map and it is the ratio
of the loss pixels ðþ1Þ to the total number of change map pixels (−1, 0 and 1):

EQ-TARGET;temp:intralink-;e010;116;192LP% ¼ loss pixels

gain pixelsþ loss pixelsþ no change pixels
: (10)

Effective forest cover change percentage. Effective forest cover change percentage
(ECP%) is also calculated on the change map to calculate the overall change in forest percentage
with respect to the former year’s forest percentage. It is calculated as follows:

Table 3 Number of patches in the train, validation, and test sets.

Band Percentage (%) Number of images

Training 80 2700

Validation 10 338

Test 10 337

Overall 100 3375
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EQ-TARGET;temp:intralink-;e011;116;735ECP% ¼ forest% latter year − forest% former year

forest% former year
: (11)

4 Results

In this section, we present detailed evaluations of the AI-ForestWatch framework. We present
comparisons of the statistical ML-based classification algorithms against UNet semantic seg-
mentation for all the configurations. Furthermore, we also present forest cover and change
statistics in the study area from years 2014 to 2020.

4.1 Comparison with Classification Algorithms

As already discussed in Sec. 2, statistical machine learning algorithms are commonly employed
to solve the land cover classification problem. In addition to the semantic segmentation-based
approach, three machine learning algorithms, decision tree, logistic regression, and random for-
est were also explored in this study. For these machine learning algorithms, 5000 points were
chosen for each classifier as training input and 5000 for testing. The Landsat-8 was used as input
while the digitized data as the ground truth. Furthermore, extensive exploration was conducted
on selection of ideal model by considering different input channel configurations for all above-
mentioned machine learning and deep learning algorithms.

The results of explorations of the algorithms for RGB, full-spectrum, vegetation indices, and
augmented are presented in Tables 4–7, respectively. Decision tree and logistic regression
showed the worst results in most configurations. Quantitatively, semantic segmentation-based
approach outperformed statistical machine learning algorithms in terms of accuracy. However,
this measure should be carefully considered as we are performing binary classification and there
exists a class imbalance between the forest and non-forest classes. Due to this reason,

Table 4 Test accuracy and per-class F1 scores comparison of the baseline ML-based land cover
classification algorithms with UNet-based semantic segmentation approach for RGB channels.

Classifier

Precision Recall F1 score

Test
accuracy (%)Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.41 0.82 0.50 0.75 0.45 0.78 68.78

Logistic regression 0.75 0.75 0.05 0.99 0.09 0.86 75.45

Random forest 0.57 0.84 0.50 0.87 0.53 0.85 77.60

Semantic segmentation (UNet) 0.69 0.86 0.41 0.95 0.52 0.90 83.88

Table 5 Test accuracy and per-class F1 scores comparison of the baseline ML-based land cover
classification algorithms with UNet-based semantic segmentation approach for full-spectrum input
image.

Classifier

Precision Recall F1 score

Test
accuracy (%)Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.45 0.84 0.56 0.77 0.50 0.80 71.31

Logistic regression 0.75 0.75 0.05 0.99 0.09 0.86 75.45

Random forest 0.65 0.87 0.60 0.89 0.62 0.88 81.67

Semantic segmentation (UNet) 0.62 0.86 0.43 0.93 0.51 0.89 82.52
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combination of F1 score, precision, and recall along with accuracy are used as standards to
evaluate the performance of the models.

Among semantic segmentation models, although, the RGB model yielded the best accuracy
(83.88%). However, it lacked in terms of the F1 score (0.52) and recall (0.41) for the forest class.
The vegetation indices model performed best in terms of F1 score (0.58) for and recall (0.53) for
the forest class but lacked in precision. The augmented model (18 input indices) produced the
best results with regard to every measure with the exception of recall for the forest class. Due to
this reason, the augmented model was selected for the AI-ForestWatch framework to perform
forest estimation and change detection task. The estimation and change detection results dis-
cussed from here onward are derived using this model.

4.2 Estimation and Change Detection Results

After selection of the augmented model on basis on accuracy and the F1 score, the forest area
cover and change maps for years 2014 to 2020 of the 15 districts of the BTAP project are gen-
erated. As the model is only trained and tested on year 2015 data, inference is performed on clean
images from year 2014 and 2016 to 2020 using the augmented input configuration. The detailed
numerical statistics for all the 15 districts of the BTAP project in our case study are summarized
in Table 8. Nowshehra is the only district to show a negative change in forest cover from 2014 to
2020. The rest of the districts show an increase in the forestation. The ECP% column in Table 8 is
the percentage change in forest cover compared to the forest cover in 2014. Hence some changes
are very higher (þ764% for Haripur and þ327.13% for Malakand) because forest cover in 2014
was quite low and majority of the afforestation drive was carried out in these districts. The 14 to
20 LP% and 14 to 20 GP% columns show the forest loss and GP%, respectively, according to the
metrics given in Sec. 3.2.4. In all districts except Nowshehra, the GP% is more than the LP%,
which explains the overall forest gain seen in most districts.

Table 6 Test accuracy and per-class F1 scores comparison of the baseline ML-based land
cover classification algorithms with UNet-based semantic segmentation approach for vegetation
indices.

Classifier

Precision Recall F1 Score

Test
accuracy (%)Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.43 0.82 0.52 0.77 0.47 0.80 70.58

Logistic regression 0.68 0.82 0.39 0.94 0.50 0.87 79.89

Random forest 0.62 0.85 0.53 0.89 0.57 0.87 79.74

Semantic segmentation (UNet) 0.64 0.87 0.49 0.93 0.55 0.90 83.45

Table 7 Test accuracy and per-class F1 scores comparison of the baseline ML-based land
cover classification algorithms with UNet-based semantic segmentation approach for augmented
configuration.

Classifier

Precision Recall F1 score

Test
accuracy (%)Forest Non-forest Forest Non-forest Forest Non-forest

Decision tree 0.45 0.84 0.56 0.77 0.50 0.80 71.45

Logistic regression 0.66 0.84 0.48 0.92 0.55 0.87 80.44

Random forest 0.65 0.87 0.60 0.89 0.62 0.88 81.74

Semantic segmentation (UNet) 0.66 0.87 0.48 0.93 0.55 0.90 83.79
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5 Discussions

In order to solve the problem of forest estimation and change detection, we compared various
machine learning algorithms with a semantic segmentation-based approach. Additionally, we
also considered multiple input channel configurations for detailed exploration of the algorithms.
The deep learning-based semantic segmentation using UNet outperformed the other statistical
machine learning algorithms quantitatively. The validation of the algorithms (statistical machine
learning and deep learning) is based on the year 2015 images provided by the forest department
of the KP province, Pakistan. These images are a result of a field survey conducted by the gov-
ernment to estimate the effects of BTAP project on the forest areas in year 2015. After detailed
exploration, a UNet model with augmented configuration was selected for the AI-ForestWatch
framework and trained and tested on year 2015 data. The trained model was inferred on the
Landsat-8 images of years 2014 and 2016 to 2020 to generate the detailed forest statistics.

Since we detect the change trend for the temporal period from 2014 to 2020, we generated the
forest cover maps for all these years. Difference maps of consecutive years yield the pixel-wise
change maps for years 2014 to 2015, 2015 to 2016, 2016 to 2017, 2017 to 2018, 2018 to 2019,
and 2019 to 2020. These change maps indicate the pixels, in which forest changed to non-forest,
vice-versa, and the pixels with no change. Such discrete series of images can help in analysis of
how the forest cover is changing over the temporal period and it can be extrapolated to see how
the forest maps would look in the coming years. Since the maps show pixel-wise change, precise
locations of forest loss/gain can be determined at upto 30 m per pixel. This information is very
crucial for the foresters as it can be used to determine the reasons for loss and devise policies for
forest protection and afforestation.

One artifact seen in our estimations is that the FC% jumps from years 2014 to 2015, came
down closer to year 2014 percentage cover again in year 2016, and then increased normally from

Table 8 Forest statistics for the 15 BTAP districts produced by our AI-ForestWatch framework
from 2014 to 2020. All districts except Nowshehra have shown a positive change in forest cover.
It must be noted here that the ECP% compares the forest cover of 2020 relative to 2014 and
not with respect to the total land area of the district.

Region
2014
FC%

2015
FC%

2016
FC%

2017
FC%

2018
FC%

2019
FC%

2020
FC%

14 to 20
LP%

14 to 20
GP%

14 to 20
ECP%

Nowshehra 2.94 11.31 3.63 7.74 5.39 5.71 2.80 1.17 1.02 −4.92

Kohat 0.72 15.0 1.04 1.81 2.48 0.83 1.0 0.27 0.55 +38.93

Karak 1.08 13.84 2.85 5.21 3.45 3.56 2.51 0.35 1.78 +131.56

Hangu 0.15 4.03 1.62 4.53 1.62 1.76 0.58 0.11 0.54 +295.09

Battagram 17.84 23.92 23.96 25.90 27.81 28.18 33.80 1.92 17.88 +89.48

Abbottabad 17.22 29.33 15.84 24.95 30.68 17.16 23.53 0.72 7.03 +36.64

Haripur 0.75 21.78 1.27 12.40 17.14 5.00 6.50 0.21 5.87 +764.83

Kohistan 21.23 29.42 24.12 31.56 30.97 32.29 31.82 2.03 12.62 +49.88

Tor Ghar 15.95 25.43 16.89 24.55 35.67 22.04 25.76 0.48 10.29 +61.49

Mansehra 16.46 20.53 18.87 21.50 24.38 19.14 23.98 1.44 8.97 +45.72

Buner 2.97 25.63 5.63 21.40 18.50 8.83 12.19 0.24 9.46 +310.96

Lower Dir 4.29 11.94 10.54 12.53 11.88 4.43 7.71 1.06 4.49 +79.95

Malakand 0.94 13.15 11.01 15.11 8.63 6.62 4.03 0.24 3.33 +327.13

Shangla 17.68 31.91 27.81 32.02 31.45 25.30 32.17 0.83 15.32 +81.92

Swat 16.73 18.01 19.04 22.0 20.84 21.51 24.42 1.67 9.37 +46.0
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years 2016 to 2020. This artifact is clearly visible in Table 8, districts Karak, Haripur, and Buner.
In our case, we are constrained by the fact that only the local land cover data for year 2015 are
available. Such artifacts can be resolved by cross-temporal training on labeled Landsat-8 data of
multiple years, i.e., 2014, and 2016 to 2020. Since for training the model, we are relying on the
data from year 2015 only (because that is the only available data) and generating forest cover
estimations and maps for rest of the years, then any kind of noise, such as seasonality effects or
cloud cover taken from year 2015 data could have generated this anomaly. We surmise that this
would normalize or die out as more training data becomes available since in that case there would
be a greater chance of receiving images of the same district from different years that have differ-
ent seasonality effects in them even when they were cleaned by cross-temporal median filtering
within 1 year of data. The classification model would then learn these seasonality effects along-
side the classification task and would be more robust.

It should be noted that such detailed forest cover change maps and statistics (as shown in
Appendix A) are not available for the BTAP project and this is considered a first attempt to assess
the effects of afforestation on the forest cover area of the BTAP project at a reasonably high
spatial resolution (see images of selected regions in Figs. 6 and 7). Nazir et al.48 presented a
mathematical model which suggests that the BTAP project will increase the forest area of the
KP province to 23.59 million hectares, which is a 3.29% improvement over the forest area.
Although this mathematical model considers the complete area of the KP province, our study
of 15 districts shows a similar trend (presented in Table 8). Along with improvement in the forest
area, the BTAP project has a positive socioeconomic impact on the population of KP. Khan
et al.49 showed that social sustainability increased by 69% between years 2014 and 2018.
Additionally, the economic condition of the rural households in the region has improved con-
siderably. Although the BTAP project have numerous positive environmental and social impacts,
it lacks human resources and funding50 to continuously monitor the forest cover and change. In
order to tackle these problems, the change maps generated by the AI-ForestWatch framework
provide the foresters with an initial estimations of the BTAP project and its impacts on land cover
and all the associated ecosystems while relying on our digitized maps accuracy and the
assumption that our cross-temporal forest cover predictions are accurate. Furthermore, it will
provide policy makers with not only essential information for long-term planning but also to
devise afforestation strategies.

Although, global forest change cover maps are also presented by Shimada et al.5 and Hansen
et al.17 until 2012 and 2018, respectively. However, these lack the local knowledge and context,
i.e., forest tree species and local forest rules. Globally different countries and locations have
different forest species/qualities with respect their climate and region, for instance, forests in
Asia will have different specifications as compared to Europe and North America.
Therefore, the approach presented herein takes into account the local knowledge using the local
training and annotated data to generate detailed maps of the specific region as shown in
Appendix A. As we aim to open source the AI-ForestWatch framework, the release will include
the dataset (training, validation, and test), the methodology, and the pretrained models. In order
to adopt our framework for any other location or region, the pretrained models can be easily
adapted by using the transfer learning approach to fine-tune the model for that specific study area
or location.

The investigations carried out in this study will lead to new opportunities for forest mon-
itoring specifically for the countries with limited resources. This would surely help foresters to
have initial estimations of the available forest inventory and associated ecosystems. Furthermore,
multi-label land cover maps can allow the same approach to be provided with, for example,
monthly multi-spectral image profiles from Sentinel-2 or Landsat-8 data to monitor the change
in water bodies, glaciers, or yearly urban growth.

6 Conclusion

Forest estimation and change detection are essential parameters for maintenance of the forest
inventory, forest ecosystems, and carbon emissions. In order to perform these estimations fre-
quently, in this paper, we presented AI-ForestWatch, an end to end framework for forest
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estimation and change detection using the open source tools and imagery. Our approach is based
on semantic segmentation (UNet), which performs pixel-wise classification to detect the forest
and non-forest areas in an extended (eleven Landsat-8 bands concatenated with seven vegetation
indices) Landsat-8 imagery. We generate pixel-wise forest and non-forest change maps using
multi-temporal change detection from the years 2014 to 2020. As a case study, we analyzed
the proposed framework on the 15 BTAP project districts in the KP province of Pakistan.
Our evaluations show a positive change with forest cover improvements in the 14 BTAP districts
of the study area. In the future, we aim to explore newer CNN topologies such as SegNet and
Mask RCNN for more accurate forest cover map predictions. Furthermore, more accurate com-
parisons will be made when yearly ground truth data for all the years are available. That would
allow us to train the classification network cross-temporally for better map predictions.

7 Appendix A: Forest Cover Maps and Change Maps of Selected
Regions for the BTAP Project Generated by Our AI-ForestWatch
Framework

Although, detailed forest cover and change maps of all 15 districts under study were generated
by the AI-ForestWatch framework. In Figs. 6 and 7 we show only forest cover and change maps
of districts Abbottabad and Battagram respectively.

(a) (b) (c)

(d)

(g) (h)

(e) (f)

Fig. 6 Abbottabad district 2014 to 2020 statistics generated automatically by the AI-ForestWatch
framework: (a)–(g) the forest cover maps generated by the UNet inference from years 2014 to
2020, respectively, and (h) the forest change map of 2020 with respect to 2014. Blue pixels indi-
cate no change in the area, red pixels indicate forest loss, and green pixels indicate forest gain.
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