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Abstract. Accurate information on the spatial distribution of crops is of great significance for
scientific research and production practices. Such accurate information can be extracted from
high-spatial-resolution optical remote sensing images. However, acquiring these images with a
wide coverage is difficult. We established a model named multispectral super-resolution gen-
erative adversarial network (MS_SRGAN) for generating high-resolution 4-m images using
Gaofen 1 wide-field-view (WFV) 16-m images. The MS_SRGAN model contains a generator
and a discriminator. The generator network is composed of feature extraction units and feature
fusion units with a symmetric structure, and the attention mechanism is introduced to constrain
the spectral value of the feature map during feature extraction. The generator loss introduces
feature loss to describe the feature difference of the image. This is realized using pre-trained
discriminator parameters and a partial discriminator network. In addition to realizing feature
loss, the discriminator network, which is a simple convolutional neural network, also realizes
adversarial loss. Adversarial loss can provide some fake high frequency details to the generator
to get a more sharpened image. In the Gaofen 1 WFV image test, the performance of
MS_SRGAN was compared with that of Bicubic, EDSR, SRGAN, and ESRGAN. The results
show that the spectral angle mapper (3.387) and structural similarity index measure (0.998) of
MS_SRGAN are higher than those of the other models. In addition, the image obtained by
MS_SRGAN is more realistic; its texture details and color distribution are closer to the reference
image to a greater extent. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.028506]
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1 Introduction

Remote sensing technology enables the acquisition of ground information over large areas.
Accordingly, remote sensing images have become an important source of basic data in many
fields such as global change studies, agricultural monitoring, and resource and environmental
surveys. Satellite imagery can be used for crop information extraction over large-scale areas.
With the advantages of wide spatial coverage, rich spectral information, and high temporal res-
olution, wide-field-view (WFV) images from Chinese satellites Gaofen-1 (GF1) and Gaofen-6
(GF6) have a high application potential for crop information extraction. However, they cannot be
directly used to extract detailed information on the spatial distribution of crops due to their lower
spatial resolution of 16 m. In contrast, panchromatic and multispectral sensor (PMS) images of
Gaofen-2 (GF2) have a spatial resolution of 1 and 4 m, respectively, offering the opportunity to
extract accurate information on the spatial distribution of crops. However, their application is
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limited by a narrow spatial coverage and low temporal resolution, which are not favorable for
large-scale crops.1 Therefore, super-resolution—an image reconstruction technique2—of GF1
and GF6 images with GF2 images as reference data is of high significance for extracting accurate
information on the spatial distribution of crops over a wide area.

Super-resolution can be mainly classified into two types: single image super-resolution
(SISR)3 and multi-frame super-resolution4 Classic SISR methods include interpolation,5 maxi-
mum a posteriori probability (MAP),6,7 and projections onto convex sets of algorithms.8 Most of
these classical methods are based on statistical analysis. Recently, researchers have introduced
machine learning to super-resolution9 such that improved algorithms can acquire more informa-
tion to improve the quality of the generated images. Super-resolution algorithms that are based
on dictionary learning,10–12 local linear regression,13,14 and neural networks have shown positive
results.

Convolutional neural networks (CNNs) have strong autonomous learning capabilities and
outstanding advantages in feature extraction.15–19 By fully integrating the advantages of
CNNs in feature extraction, super-resolution CNNs (SRCNN) can generate super-resolution
images by adjusting high-resolution images reconstructed using the Bicubic interpolation
method.20 When applying the advantages of CNNs, researchers have built various super-
resolution networks, including very deep convolutional networks (VDSR),21 residual encoder-
decoder networks,22 deeply recursive convolutional networks,23 Laplacian pyramid super-
resolution networks,24 super-resolution DenseNet (SRDenseNet),25 enhanced deep residual
networks (EDSR),26 and residual channel attention networks (RCAN).27 Among them, VDSR,
SRDenseNet, and RCAN use the feature extraction method of image classification to deepen the
network; the effectiveness of this network structure in super-resolution has been proven through
experiments. In terms of upsampling, methods based on convolution (deconvolution28 and pixel-
shuffle pixel29 methods) clearly show a higher performance than the methods based on
interpolation.

Generative adversarial networks (GANs)30 have shown excellent results in various fields,
such as image style migration,31–33 super-resolution image completion,34–36 and denoising.37–39

GANs have some advantages in super-resolution because a discriminator network, which is
introduced in them, uses two networks to train each other and enables the discriminator to
instruct the generator to produce an image with enhanced high-frequency textural detail.
Super-resolution GANs (SRGAN),40 which are based on the retention of traditional loss, sig-
nificantly improve the effect of image generation by further adding perceptual loss.41 Perceptual
loss uses a pre-trained network to extract a feature map that can reflect the overall structure of
images and calculate the Euclidean distance between low-resolution and high-resolution feature
maps. This multi-loss joint mechanism strengthens the optimization ability of the generated net-
work and enables the reconstruction of the overall structural features of high-resolution images.
According to the literature, SRGAN exhibits a distinctly stronger sharpening effect than
SRResNet and other methods. The enhanced super-resolution GAN (ESRGAN) combines the
residual structure and dense connectivity to introduce a residual-in-residual dense block
(RRDB), which enhances the feature mapping capability of the generator and further improves
the accuracy of the results.42 RankSRGAN adds a loss of rank content based on the standard
SRGAN loss, which enhances the training ability of the generator. Previous studies have reported
that the loss of rank content can be applied to various methods and can further improve the
accuracy of the results.43,44

At present, the technology of super-resolution is mature for natural images. Unlike natural
images, remote sensing images have more channels and less pixel details. Therefore, a new
super-resolution technology based on the features of remote sensing images is required. A pre-
vious study used deep-connectivity and residual-connections SRCNN (DCR_SRCNN) with a
Sentinel-2 image as a reference to realize super-resolution of Landsat images. The experimental
results showed that super-resolution was strongly affected by an excessively long time interval
between the low-resolution images and the reference images in the dataset.45 The extended
super-resolution convolutional neural network uses Landsat-8 and Sentinel-2 images at different
moments and overcomes the limitation of temporal resolution to achieve multitemporal image
fusion.46 The progressive residual depth neural network makes super resolution of the DOTA
satellite image database. Here, the progressive residual structure is used to find the feature
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information of remote sensing images at different levels to provide more detailed features for the
reconstruction of super-resolution remote sensing images.47 The dense residual generative adver-
sarial network organically combines a dense connection structure with a residual structure to
form a generating network. The Wasserstein GAN-gradient penalty (WGAN-GP) adversarial
loss calculation method has been adopted in this paper. Many experiments on the NWPU-
RESISC45 dataset show that this method can further improve the accuracy of the model in the
super-resolution of remote sensing images.48

We aimed to achieve super-resolution of GF1 and GF6 WFV images to generate images of
higher spatial resolution. A GF2 PMS image was used as the reference image, and a GAN model
was used to establish a method for the super-resolution of the WFV images. This method is
called multispectral super-resolution GAN (MS_SRGAN). The main contributions of this study
are as follows:

1. We introduced a residual squeeze-excitation (RSE) block to adjust the data distribution
in the generated image to solve the problem of inconsistency between the distribution of
Gaofen WFV data and reference image data. Furthermore, we established a generation
network with the RSE block that extracts the features of different levels of the image and
fuses the corresponding low-level features with high-level features to further improve the
accuracy of the generated image.

2. We added feature loss to describe the difference in the image features, which is realized
by the partial discriminator network, to account for generator loss.

2 Study Area and Dataset

2.1 Study Area

We selected the Shandong Province and the Ningxia Hui Autonomous Region as the study areas.
Shandong is a major agricultural province in China, with wheat, corn, and sweet potato as the
major crops. It covers an area of 157;900 km2 (34°22′–38°24′N, 114°47′–122°42′E), and its
grain output accounts for 8.1% of the national output. The Ningxia Hui Autonomous
Region covers an area of 66;400 km2 (35°14′–39°23′N, 104°17′–107°39′E). It has the agricul-
tural characteristics of northwest China, and the main grain crops of this region are maize
and wheat.

We collected images covering the flat areas of northwest and southwest Shandong and
the south-central plain of Ningxia. As the investigation was focused on cropland, most of the
selected images mainly feature cropland (Fig. 1).

2.2 Dataset

In this study, 18 GF2 PMS images from June 2019, 16 GF2 PMS images fromMarch 2020, eight
GF1 WFV images from June 2019, and five GF6 WFV images from March 2020 were collected.
Due to the large amount of data used in this study, only part of the image information is shown in
Table 1 as a representative sample. Each GF2 and GF1 image contains multispectral bands
[red, green, blue, and near-infrared (NIR)], and the GF6 images also contain multispectral bands
(red, green, blue, NIR, red edge, red edge 2, water body blue, and yellow).

First, we identified low-resolution remote sensing images and then selected different types of
high-resolution remote sensing images to act as references to build the dataset. During the selec-
tion, the following three aspects were considered: the coverage of low-resolution images, the size
of the super-resolution factor (the ratio of low-resolution images to high-resolution images), and
the band range.

Gaofen WFV images have a width of 800 km, which represents a high-quality medium-
spatial resolution. After networking, the revisit cycles of the GF1 and GF6 satellites were short-
ened to two days, thereby providing satisfactory temporal resolution and coverage. Tables 2 and
3 shows the main parameters of the GF1 and GF6 images, respectively.
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The GF2 PMS images have a spatial resolution of 4 m, which is consistent with the band
range of the Gaofen WFV images. At the same time, it can be seen from the main parameters of
the GF2 image in Table 4 that the scale range and temporal resolution of the GF2 image are
inferior to the Gaofen WFV image, and the super-resolution of the GF2 image and Gaofen WFV
image can greatly supplement the image with 4m spatial resolution.

In addition, the multispectral images selected in this experiment include the red, green, blue,
and NIR bands. The spectral range of the NIR band is included in the red band, which can
highlight the textural features of crops and coincides with the goal of our super-resolution
of crop images.

We used remote sensing image processing software to preprocess images such as atmos-
pheric correction, radiometric correction, and geographical registration such that all of the

Fig. 1 (a) Map showing the location of the study areas, and (b) satellite images of the Ningxia Hui
Autonomous Region and (c) Shandong Province.
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images are placed under the same geographic coordinate system. Then, the preprocessed refer-
ence image was cut into 480 × 480 pixels corresponding to the low-resolution image that was cut
into 120 × 120 pixels. The reference and low-resolution images contain four channels of red,
blue, green, and NIR. We stripped the bands of the GF6 WFV images that were not included in
the GF2 images to ensure compatibility among the image bands.

Finally, we obtained 1300 pairs of image blocks in the GF1–GF2 dataset and 1600 pairs of
image blocks in the GF6–GF2 dataset. Among them, 60% of the image block pairs in the two
data sets were used for training, 10% for validation, and 30% for testing.

Table 2 Main parameters of GF1 image.

Parameters 16 m–MS sensor

Spectral range Multispectral 0.45 to 0.52 μm

0.52 to 0.59 μm

0.63 to 0.69 μm

0.77 to 0.89 μm

Spatial resolution Multispectral 16 m

Scale range 800 km

Revisit cycle 4 days

Table 1 Partial image information.

Location Sensor Latitude and longitude Time Filename

Ningxia GF1-WFV3 E106.5,N35.6 20190603 GF1_WFV3_E106.5_N35.6_
20190603_L1A0004039767

Ningxia GF1-WFV3 E107.0,N37.3 20190603 GF1_WFV3_E107.0_N37.3_
20190603_L1A0004039768

Ningxia GF1-WFV3 E108.5,N38.9 20190603 GF1_WFV3_E108.5_N38.9_
20190603_L1A0004039769

Ningxia GF2-PMS1 E106.0,N36.0 20190605 GF2_PMS1_E106.0_N36.0_
20190605_L1A0004043646

Ningxia GF2-PMS1 E106.1,N36.3 20190605 GF2_PMS1_E106.1_N36.3_
20190605_L1A0004043653

Ningxia GF2-PMS1 E106.1,N36.5 20190605 GF2_PMS1_E106.1_N36.5_
20190605_L1A0004043650

Shandong GF6-WFV E116.2,N37.2 20200304 GF6_WFV_E116.2_N37.2_
20200304_L1A1119973192

Shandong GF6-WFV E116.4,N38.0 20200304 GF6_WFV_E116.4_N38.0_
20200304_L1A1119973184

Shandong GF6-WFV E115.8,N36.0 20200304 GF6_WFV_E115.8_N36.0_
20200304_L1A1119973194

Shandong GF2-PMS2 E115.9,N36.5 20200310 GF2_PMS2_E115.9_N36.5_
20200310_L1A0004666684

Shandong GF2-PMS2 E116.0,N37.0 20200310 GF2_PMS2_E116.0_N37.0_
20200310_L1A0004666703

Shandong GF2-PMS2 E115.2,N35.1 20200310 GF2_PMS2_E115.2_N35.1_
20200310_L1A0004664717
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3 Method

3.1 Key Question

The GF1-GF2 and GF6-GF2 datasets were produced in this study according to the method in
Pouliot et al.45 The production method of this data set makes use of a known high-resolution
image to carry out super-resolution for another low-resolution image, making full use of the
advantages of the abundant data sources of remote sensing images. The known high-resolution
images provide rich high-frequency details to the algorithm. However, different satellites use
different instruments with various sensor ranges, so images of the same location sensed with
different satellites might deviate from each other. It can be seen from Fig. 2 that, although the
ground cover features of images GF1 and GF2 are the same, the actual point distribution histo-
gram is quite different (Fig. 3).

This leads to the problem of inconsistent spectral distributions between the low-resolution
and reference images, which makes feature extraction more difficult. To reduce the impact of this

Table 4 Main parameters of GF2 image.

Parameters 2 m–PAN sensor/8 m–MS sensor (μm)

Spectral range Panchromatic 0.45 to 0.90

Multispectral 0.45 to 0.52

0.52 to 0.59

0.63 to 0.69

0.77 to 0.89

Spatial resolution Panchromatic 1 m

Multispectral 4 m

Scale range 45 km

Revisit cycle 5 days

Table 3 Main parameters of GF6 image.

Parameters 16 m–MS sensor

Spectral range Multispectral 0.45 to 0.52 μm

0.52 to 0.59 μm

0.63 to 0.69 μm

0.77 to 0.89 μm

0.69 to 0.73 μm

0.73 to 0.77 μm

0.40 to 0.45 μm

0.59 to 0.63 μm

Spatial resolution Multispectral 16 m

Scale range 800 km

Revisit cycle 4 days
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problem, we chose to add RSE blocks to the generator to enhance its simulation ability and
further improve the similarity of texture details between the generated image and the reference
image.

3.2 Structure of MS_SRGAN

The structure of the proposed model is shown in Fig. 4. The generator network comprises an
RSE block, a convolutional layer, and a deconvolutional layer. The generator loss constitutes
three parts: adversarial loss, per-pixel loss, and feature loss. The discriminator network consists
of a convolutional layer, global average pooling, and an activation layer. The discriminator loss is
realized by the Wasserstein distance.

3.3 Generator

Considering the problem described in Sec. 3.1, we introduce an attention mechanism to build the
RSE block (Fig. 5). In this block, the overall feature of each channel of the input feature map is
calculated as a scalar. Then, the scalar is used as the band weight for multiplication with the
feature map. The shortcut is joined to construct an identity map of unweighted features to a high
level. In this manner, the spectral value of each channel can be increased or decreased linearly
depending on the correlation between them. This imposes constraints on the spectral distribution
in the process of image generation and can further improve the color realism of the generated
image. We added an RSE block at the first input position of each feature extraction unit (Fig. 4).

Fig. 3 Point distribution histogram of (a) GF1 image and (b) GF2 image.

Fig. 2 (a) GF1 image and (b) GF2 image.
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According to the number of feature extraction units, we added a total of for RSE blocks to
the generator.

The overall structure of the generator network, shown in Fig. 4, is composed of two parts.
The first part implements feature extraction, and the second part implements scaling enhance-
ment of the feature map.

Feature extraction is carried out step by step and includes four extraction units. Except for the
first extraction unit, all others contain one RSE block, three convolutional layers, and down-
sampling. Each convolutional layer contains two parts: convolution and activation. The size
of all convolution kernels is 3 × 3, and the stride is 1. The number of feature layers doubles
with each unit that is passed through. Downsampling is performed by dilated convolution, which
is used to reduce the number of rows and columns in a feature map by half. This extraction
method fully considers the features of the rich spectral information of remote sensing images,
squeezes the redundant features of the multichannel feature map, excites the effective feature of
the multichannel feature map, fuses more features in the multichannel space, and defines the
functions of different convolutions. At the same time, when the convolutional layer reduces
the scale of the feature map, it avoids the occurrence of a large noise or information loss of
the channel dimension features.

Fig. 5 Schematic of the RSE block.

Fig. 4 Basic structure of the MS_SRGAN model (LR: low-resolution image; SR: super-resolution
image; HR: high-resolution image; Conv: convolutional layer).
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When the scale of the feature map is enhanced, the recovery unit of each stage and the extrac-
tion unit of each step during the feature extraction form a symmetrical structure, and one upsam-
pling layer and two convolutional layers are adopted. This not only restores the scale of the
feature map but also establishes a simple feature mapping process for enhancing the low-level
feature to the high-level feature, which ensures that the low-level information is not lost due to
the reduction of the scale of the feature map. The upsampling layer adopts deconvolution to
restore the reduced feature map during feature extraction, and the deconvolution doubles the
number of rows and columns of the feature map to restore it to the same size as that of the
low-resolution image with a deconvolution kernel of 3 × 3 and a stride of 2. The convolutional
layer is used to adjust the resulting high-level and low-level features to a convolution kernel size
of 3 × 3 and a stride of 1.

Finally, upsampling is carried out to improve the scale of the image. The number of rows and
columns are respectively doubled by deconvolution, and the scale of the feature map is raised to
be consistent with the size of the high-resolution image. In addition, the spectral distribution of
the final feature map is corrected again using the RSE block.

Generator loss is composed of per-pixel, feature, and adversarial losses. Per-pixel loss is
calculated for each pixel difference between super-resolution and high-resolution images.
The formula for per-pixel loss is as follows:

EQ-TARGET;temp:intralink-;e001;116;520Per − pixel lossMAE ¼ 1

n

Xn
i¼1

jGðlLRi Þ − lHR
i j; (1)

where n is the number of batch samples, G represents the generator network, IHR is the high-
resolution image, and ILR is the low-resolution image.

Feature loss is realized using the feature map obtained by the convolution of the first seven
layers pre-trained by the discriminator. We first train the model without feature loss and then use
the first seven convolutional layer parameters of the previously optimized discriminator as the
pre-trained network in the subsequent training. The 16 × 16 × 256 size feature map with a larger
receptive field is obtained through the pre-trained network to describe the overall feature and
control the overall textural structure of the image. The formula for feature loss is as follows:

EQ-TARGET;temp:intralink-;e002;116;374Feature lossMAE ¼ 1

n

Xn
i¼1

jD 0½GðlLRi Þ −D 0ðlHR
i Þj; (2)

where n is the number of batch samples, G represents the generator network, IHR is the high-
resolution image, ILR is the low-resolution image, and D 0 represents the first seven layers of
discriminator network.

The generator adversarial loss is part of the discriminator loss. The formula for adversarial
loss is as follows:

EQ-TARGET;temp:intralink-;e003;116;265Adversarial lossGen ¼ −
1

n

Xn
i¼1

DðGðILRi ÞÞ; (3)

where n is the number of batch samples, ILR is the low-resolution image, D represents the
discriminator network, and G represents the generator network.

The formula for the total loss of the generator is as follows:

EQ-TARGET;temp:intralink-;e004;116;180Loss ¼ σ � Per − pixel lossMAE þ β � Adversarial lossGen þ Feature lossMAE; (4)

where σ and β are the weight coefficients of the pixel loss and adversarial loss, respectively.

3.4 Discriminator

The feature extraction structure of the discriminator network is mainly composed of 10 layers of
convolution, which can be divided into two types according to their functions. The first type is
used to reduce the scale of the feature map; they have a convolution kernel size of 4 × 4 and a
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stride of 2. The second type is used to increase the numbers of the convolution kernels and
channels in the feature map; they have a convolution kernel size of 3 × 3 and a stride of 1.
These two types are stacked alternately to compose the feature extraction part of the network.
Global average pooling and a 1 × 1 convolutional layer are selected instead of linear mapping of
the full connection layer for the vectorization of feature fitting. In this manner, the feature map
can be directly associated with the classification task while reducing model parameters, thereby
effectively avoiding discriminator over-fitting.

Many models have shown that the Wasserstein distance is able to effectively avoid the
gradient disappearance or gradient explosion during the training of a GAN network. WGAN
minimizes the Earth-mover distance by adopting its approximate deformation and truncates the
absolute value of the discriminator parameters to no more than a fixed constant 0.01 after each
update, which solves the problem of the instability of the GAN during training. Therefore,
we chose the Wasserstein distance49 as the discriminator loss of the model. The formula for
the discriminator loss is as follows:

EQ-TARGET;temp:intralink-;e005;116;568Loss ¼ sup
kfkl≤1

Ex 0∼Pr
½Dðx 0Þ� − Ex∼Pg

½DðxÞ�; (5)

where kfkl ≤ 1 means that the function is a 1-Lipschitz function, Pg represents the generated
image distribution, Pr represents the reference image distribution, x 0 represents the reference
image, x represents the generated image, D represents the discriminator network, and G repre-
sents the generator network.

3.5 Training Steps

The MS_SRGAN model specific training steps are as follows, with LR representing low-
resolution image; SR representing super-resolution image; and HR representing high-
resolution image.

1. Generate SR using the LR input generator network.
2. Optimize the discriminator network using the input discriminator of SR and HR. Repeat

step (2) K times.
3. Use SR and HR to calculate the generator loss. Use SR and HR to calculate per-pixel

loss, and input the pre-trained network to calculate feature loss. Optimize the discrimi-
nator network using the SR input to calculate the adversarial loss. Use the weighted sum
of the three losses to calculate the generator loss, and optimize the generator network.
Repeat steps (1), (2), and (3).

Here,K times is the optimal training for the discriminator, and the overall number of repeated
trainings in (1), (2), and (3) is determined by epoch.

3.6 Experimental Setup

We selected the Bicubic, EDSR, SRGAN, and ESRGAN models for comparison. Bicubic inter-
polation is a traditional interpolation method that is the most used super-resolution method in
the industry. EDSR is a deep CNN built based on the residual structure. To further enhance the
capability of model feature extraction, the batch normalization layer was removed from
the model, and the optimized loss target was completely based on the mean absolute error
(MAE) index. This method exhibits excellent performance in the super-resolution algorithm
of CNN. SRGAN is a classic SRGAN model that adopts standard discriminator loss as
GAN loss, whereas generator SRResNet adopts residual structure as the main architecture the
construction of the model. ESRGAN is based on SRGAN, but it uses an RRDB as the generator
feature extraction block to enhance the feature extraction capability of the model. Its perfor-
mance is superior to SRGAN in terms of natural image super-resolution. As for the test results
of the comparative experimental model, we trained the EDSR, SRGAN, and ESRGAN models
from scratch on the dataset in this study and then tested these models (Table 5).
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All experiments in this study were run on a graphic workstation purchased by the laboratory.
This workstation is equipped with NVIDIA GeForce GTX TITAN X (Pascal) GPUs with 12 GB
of video memory and a Linux Ubuntu 16.04 operating system. In this study, the model was built
based on the Pytorch deep learning library, and the coding was implemented in Python language.
Additional details of the model are as follows: the number of training images in each batch was
16; the total training epoch was 5,000; the learning rate initialized was 1e − 4; K was 5; and the
learning rate decreased to half of the previous rate after every 1000 epochs.

Owing to the limitation of the Wasserstein distance loss, the method described in this paper
cannot adopt the optimization method that adds the momentum factor. Therefore, the RMSProp
optimization method was adopted for model training; the initial learning rate is 10−4, and the
gamma is 0.9. The pre-trained model of the feature loss contains the model parameter that was
trained based on the GF1–GF2 data set for the first time, which is saved as a pth weight file, and
loaded in each subsequent training. During the training of SRGAN and ESRGAN using the
dataset selected in this study, these models also joined the feature loss pre-trained network, and
the method was the same as that for MS_SRGAN.

4 Results

4.1 Evaluation Metrics

We selected the known performance metrics MAE, structural similarity index measure (SSIM),
spectral angle mapper (SAM), and the relative global-dimensional synthesis error (ERGAS) to
compare the experimental results of different models.

In our generator, the MAE is a part of the loss. It reflects the level of uncertainty in the image,
and it can be used as a performance metric. The formula for MAE is as follows:

EQ-TARGET;temp:intralink-;e006;116;251MAEðx; yÞ ¼ 1

W �H
XW
i¼1

XH
j¼1

jxi;j − yi;jj; (6)

whereW is the width of the image,H is the height of the image, x is the generated image, and y is
the reference image. The ideal result of this metric is 0.

The SSIM50 compares image distortion in three levels: brightness (mean), contrast (variance),
and structure. The formula for SSIM is as follows:

EQ-TARGET;temp:intralink-;e007;116;152SSIMðx; yÞ ¼ ð2μxμy þ c1Þð2σxy þ c2Þ
ðμ2x þ μ2y þ c1Þðσ2x þ σ2y þ c2Þ

; (7)

where x is the generated image, y is the reference image, μx is the mean value of x, μy is the
mean value of y, σ2x is the x variance, σ2y is the y variance, σxy is the x and y covariance,

Table 5 Models used in the comparative analyses.

Module name Model introduction

Bicubic Traditional bicubic interpolation.

EDSR A super-resolution CNN composed
of the residual structure.

SRGAN A super-resolution model that processes natural
images using SRResNet as a generator.

ESRGAN Enhanced version of SRGAN. The precision of the
result of the ESRGAN is better than that of the SRGAN.

MS_SRGAN The proposed method.
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c1 ¼ ð0.01 �MAXÞ2, c2 ¼ ð0.03 �MAXÞ2, and MAX is a constant (65,535).The ideal result of
this metric is 1.

The value of MAX is determined by the pixel bit-width of each pixel point in the image. The
pixel bit-width of a remote sensing image is different from that of a natural image. Thus, it is
meaningless to perform a longitudinal comparison based on the standard of traditional natural
images.

The SAM51 measures the spectral angle between two vectors, and it is used to measure the
spectral similarity between the original multispectral data and the reconstructed multispectral
data.

EQ-TARGET;temp:intralink-;e008;116;627SAMðv; v̂Þ ¼ sin−1
v; v̂

v2 � v̂2
; (8)

where v is the pixel vector formed by the reference image and v̂ is the vector formed by the
generated image. The ideal result of this metric is 0.

The ERGAS52 provides a global quality evaluation of the generated result and is calculated
via Eq. (9).

EQ-TARGET;temp:intralink-;e009;116;535ERGAS ¼ 100
h
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk
i¼1

ðRMSEðiÞ∕MeanðiÞÞ2
vuut ; (9)

EQ-TARGET;temp:intralink-;e010;116;466RMSEðx; yÞ ¼ 1

W �H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XW
i¼1

XH
j¼1

ðxi;j − yi;jÞ2
vuut ; (10)

where h∕l is the ratio between the spatial resolution of the generated image and that of the low-
resolution image, k is the number of bands of the generated image, Mean (i) is the mean value of
the differences between the i’th band of the reference image and that of the generated image, and
RMSEðiÞ indicates the root-mean-squared error of the i’th band between the reference images y
and generated images x. The ideal result of this metric is 0.

4.2 Super-Resolution Result of GF1

The test and comparison experiments were carried out on the GF1 test set using the trained
MS_SRGAN. Figure 6 contains four groups of images, and each group contains reference
HR (GF2 PMS images) and Bicubic (GF1 image bicubic results), EDSR, SRGAN,
ESRGAN, and MS_SRGAN generated images in this order from left to right. Each image shows
an RGB (red-green-blue) color image, a false color combination NIR-red-green image, and an
NIR grayscale image. The a and b groups of images mainly show the results of the crop plan-
tation areas. The c and d groups of images mainly show the results of the areas covered by
buildings.

The performance of the five models were compared horizontally using the MAE, SSIM,
SAM, and ERGAS metrics of the super-resolution and reference images. As can be seen from
Table 6, the results in bold font are the best, and those in italic font represent the second best. The
results (Table 6) show that the method presented in this paper performs best in both SSIM and
SAM. Its performance is suboptimal in MAE and ERGAS. This is because the loss of the EDSR
model is completely based on the MAE index, whereas MS_SRGAN is optimized based on three
losses, and its results have the best structural and spectral similarities. Although the SAM metric
in Table 6 is very large, the metric calculation program that we wrote strictly followed the metric
formula, and we manually verified that the results were correct.

4.3 Super-Resolution Result of GF6

Figure 7 shows the test results of the experiment for the GF6 image, which primarily shows the
crop plantation areas. It can be seen from Bicubic (GF6 image bicubic results) and reference HR
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Fig. 6 Reference HR images with corresponding Bicubic, EDSR, SRGAN, ESRGAN, and
MS_SRGAN.
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Fig. 7 Reference HR images with corresponding Bicubic, EDSR, SRGAN, ESRGAN, and
MS_SRGAN.

Table 6 Performance metrics of the various models.

Metrics Bicubic EDSR SRGAN ESRGAN MS_SRGAN

MAEm 107.58 19.461 33.589 29.758 23.125

SSIMm 0.936 0.994 0.996 0.997 0.998

SAMm 28.203 7.668 7.534 5.932 3.387

ERGASm 9.972 1.332 3.759 3.947 2.806

MAEm: mean MAE; SSIMm: mean SSIM; SAMm: mean SAM; ERGASm: mean ERGAS.
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(GF2 PMS images) that there is a substantial time difference between the low-resolution image
and the high-resolution image.

The performance of the five models were compared horizontally using the MAE, SSIM,
SAM, and ERGAS metrics of the super-resolution and reference images. In Table 7, the bold
font represents the best and the italic font represents the second-best results.

5 Discussion

A comparison of the experimental results in which, owing to the large difference between the
low-resolution and the reference images, the Bicubic method that is based on interpolation can
only show the basic characteristics of the low-resolution image (GF1 image), the result is
blurred, and the sharpening effect is poor. The result of the EDSR model that is based on the
CNN is close to that of the reference image in terms of high-spatial-resolution to some extent, but
it still has the problem of blurring. In contrast, the three models that are based on the GAN have a
better sharpening effect and clarity; however, details of “artifacts” are provided only to a certain
extent by SRGAN and ESRGAN. Overall, the MS_SRGAN method provides the most realistic
high-resolution images.

This can be further illustrated through the point distribution histograms in Fig. 8. We used the
GF2 image as a reference; the goal is to get a high-resolution image with a spatial resolution
close to that of the GF2 image by the model. The closer the result is to the distribution of the GF2
image, this stronger the sense of reality is and the higher the accuracy of the image obtained by
the model is. Among all of the models, MS_SRGAN has the maximum similarity in terms of the
pixel value distribution range and pixel value curve trend of the reference image. Therefore, the
spatial details and texture information of MS_SRGAN are closer to the reference image, which
can further improve the accuracy of the results of subsequent applications.

5.1 Influence of Dataset Production and Criteria

Two patterns for the establishment of a remote sensing image reconstruction algorithm dataset
exist. The simple pattern is mainly aimed at the visible spectra, and the remote sensing data
format is compressed into the RGB color mode for super-resolution. The advantage of this
method is that, after the band value is compressed, the data complexity is reduced, and the image
can be represented to a certain extent. However, the accuracy of the compressed data is greatly
reduced. The other approach, which was employed in this study, is based on adding other spectra
while retaining the original format of the remote sensing images.

In this study, GF1 or GF6 WFV images were used as low-resolution images, and GF2 PMS
images were used as high-resolution images, while the original format of remote sensing image
data was retained. This method captures the high-frequency details of high-resolution images to
the maximum extent and avoids the loss of information in the process of image compression.
However, we ran into problems in the experiment. As can be seen from the point distribution
histogram given in Sec. 3.1, the pixel value distribution of remote sensing images significantly
differs, which leads to a phenomenon similar to the pixel value distribution shift in EDSR,

Table 7 Performance metrics of the various models.

Metrics Bicubic EDSR SRGAN ESRGAN MS_SRGAN

MAEm 147.20 39.928 53.811 50.442 42.571

SSIMm 0.917 0.993 0.995 0.995 0.996

SAMm 39.635 9.814 9.760 8.227 6.757

ERGASm 11.541 4.473 9.610 8.159 5.874

MAEm: mean MAE; SSIMm: mean SSIM; SAMm: mean SAM; ERGASm: mean ERGAS.

Zhang et al.: Super-resolution method using generative adversarial network for Gaofen wide-field-view images

Journal of Applied Remote Sensing 028506-15 Apr–Jun 2021 • Vol. 15(2)



SRGAN, and ESRGAN, as shown in Fig. 8. To overcome this problem, a model with a strong
ability of fitting and spectral information correction is needed.

In addition, the long time interval between low-resolution images and reference images is an
obstacle to model training. As the main surface features of the Shandong dataset are crops that
were still growing in March, the surface features of the low-resolution images were considerably
different from those of the reference images, which further increased the difficulty of model
training.

Through repeated experiments and data production, several factors affecting the experimental
results, such as the time intervals of the low-resolution and reference images, pixel value dis-
tributions of the low-resolution and reference images, and image cloud interference, were iden-
tified. Selecting images with a small time interval and accurate and consistent surface features
are important criteria for dataset construction.

Fig. 8 Point distribution histograms of Bicubic, SRGAN, ESRGAN, MS_SRGAN, and HR.
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5.2 Influence of Different Generator Network Structures

The results of the comparative analyses (Fig. 8) indicate that MS_SRGAN exhibited a higher
performance than the other models in achieving super-resolution, implying that the model’s
improvement of multispectral images is effective. The RSE block plays an important role in
the model because this attention mechanism can effectively highlight more prominent features
of the channel and realize the model’s ability to correct the spectral information.

To choose the upsampling layer, we conducted tests on both the deconvolution and sub-pixel
convolution. The test results show that deconvolution can generate super-resolution results more
quickly and efficiently. Finer results can be obtained with additional training of sub-pixel con-
volution, but these finer results are often different from the real images. Therefore, we chose
deconvolution as the upsampling layer because it is more efficient and has a better performance.

5.3 Influence of Surface Feature Type on Super-Resolution

In Fig. 6 show that the results of buildings by MS_SRGAN are poorer than those of crops, which
can be attributed to the images in the GF1-GF2 dataset only contain a small part of architectural
features, with a relatively sparse distribution of buildings. In addition, some buildings contain
only a few pixel blocks in the low-resolution image, causing difficulty in obtaining high-
frequency textural information for the model. In contrast, crop coverage was large, and hence,
the results were better than those for buildings.

The NIR band is included in the red band, and it is mainly used to detect the existence of O-H
(O: oxygen and H: hydrogen), N-H (N: nitrogen), and C-H (C: carbon) bonds in substances. The
NIR band is often used for the monitoring and analysis of plants because plants mostly contain
these chemical bonds. The test results given in Fig. 7 show that the reconstruction result was the
poorest for the NIR band of crops among all bands. This is because the crops contain large
quantities of the O-H, N-H, and C-H chemical bonds, but there are differences in the content
of the chemical bonds between individual plants. Therefore, the high-frequency textural details
of the crops in the NIR band are complex, and it is more difficult to achieve super-resolution.

6 Conclusions

This study proposed a new method, MS_SRGAN, for obtaining large coverage and high-
resolution multispectral images. This method took the GF2 PMS multispectral image as the
high-resolution image and carried out super-resolution for the GF1 WFV multispectral image.
The advantages of MS_SRGAN in the super-resolution reconstruction of multispectral images
were confirmed through experimental comparison with the Bicubic, EDSR, SRGAN, and
ESRGAN methods. This paper discussed the influence of dataset production and criteria, differ-
ent generator network structures, and surface feature type on super-resolution, and it explored the
advantages and disadvantages of the new MS_SRGAN method in detail.

To retain rich spectral information of remote sensing data, this study’s training dataset retains
the original data format. In the experiment, we found that there is a problem of inconsistent
spectral distribution between the reference image and low-resolution image. To solve this prob-
lem, this method joins an RSE block to construct the generator network and adds the Wasserstein
distance as the discriminator loss to perform super-resolution of multispectral images. By train-
ing different data, a set of criteria and methods for creating datasets with different remote sensing
images as references were determined.

However, we found that the super-resolution of NIR bands of crops and complex surface
features such as small villages and mountains was not ideal because it is difficult to provide
high-frequency textural details on low-resolution images and the generalization ability of the
model needs improvement.

In future studies, we hope to add more types of spectral images to improve the accuracy of
the image, improve the model architecture and loss function to enhance the generalizability of
the model, and find a more effective method for evaluating the super-resolution of remote
sensing image.
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