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Abstract. Accurate assessment of woody species diversity using remote sensing can assist
ecologists by providing timely information for ecosystem management. The increasing avail-
ability of remotely sensed data necessitates the investigation of accuracies of different sensors
in classifying plant species, especially during the dry season when foliage amount is low.
WorldView-2, SPOT-6, and Sentinel-2 images were compared in detecting woody species
(n ¼ 27) and three coexisting land cover types in a savanna environment during a dry period.
Random Forest (RF) and Support Vector Machine (SVM) classifiers were applied to each
imagery to make a strong case for the comparison. The overall classification accuracies ranged
between 52% and 65% for all images, with the WorldView-2 image performing the best followed
by Sentinel-2 and SPOT-6 images. These accuracy rankings were similar for both the RF and
SVM classifiers, with the former faring better. Pairwise comparison of the images using
McNemar’s test showed significant differences between images in their ability to correctly iden-
tify woody species. Analysis of band importance revealed better contributions to the classifi-
cations of infrared bands for all images. Overall, the findings showed the potential of
optical imagery in classifying and monitoring woody species hotspots in savanna environments
even during a low photosynthesis season. © 2022 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JRS.16.034524]
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1 Introduction

Savannas occupy ∼20% of the entire Earth’s surface, with 50% coverage of the African con-
tinent and 46% within the Southern Africa region.1 Savannas also offer vital services to humans
and the environment, such as the provision of grazing and browsing lands for livestock,2,3 serv-
ing as a source of food and energy to humans,4 and providing a natural habitat for wildlife.5–7

Nonetheless, climate change and anthropogenic activities are threatening the savanna ecosystem
through changes in weather patterns.8 Furthermore, an uncontrolled increase in woody plants
(woody encroachment) at the expense of other herbaceous plant species is also contributing to
the imbalance of the savanna ecosystem.9,10 Therefore, it is important to monitor savanna eco-
systems in real time to manage these ecosystems efficiently.11 Traditional approaches of quan-
tifying woody plants through field surveys are expensive and can be subjective to the
enumerator’s interpretations, marred with unreliability and precision concerns.12,13

Remote sensing techniques are used as an alternative to field enumeration because they
provide a reliable and efficient characterization of woody plant species. Several studies have
exploited multispectral remote sensing to differentiate woody and nonwoody vegetation forms
in both managed (e.g., Refs. 14 to 17) and natural forests (e.g., Refs. 10 and 18) at relatively high
accuracy levels due to significant differences in the structural and chemical composition of the
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two plant forms. Such capability has been extended to identify a specific species from an ensem-
ble of plant species in the savanna environments (e.g., Refs. 19 to 23). Focusing on a targeted
species is important to manage, for example, invasive species and endangered plants.19,20,22,24

However, from a remote sensing viewpoint, the identification of a single species remains fairly
simple due to the homogeneity of chemical properties in the species of interest compared with
cohabiting species.25

Monitoring multiple species types is essential for biodiversity assessment aimed toward
maintaining ecological services and ecosystem functioning.12,26 Multispectral images have been
applied to differentiate multiple species types in the mangrove,27 subtropics,28 temperate
regions,29 boreal forest,30 and tropical rainforest31 with high accuracies achieved in most cases
(>75%). Similar applications have been conducted in heterogeneous savanna environments (e.g.,
Refs. 10, 20, and 32). Reference 33 classified multiple species (n ¼ 40) using both nonpansharp-
ened and pansharpened Quickbird multispectral image. The authors evaluated classification per-
formance using the overall kappa coefficient and recorded accuracies ranging between 0.48 and
0.99. Reference 34 compared the efficacy of SPOT-5 and Landsat-5 to discriminate multiple spe-
cies (n ¼ 22) and reported rather low accuracies (<53%) for both images. A common cause of
inaccuracy in the classification of vegetation is a mixed pixel phenomenon due to mismatch
between the scale of imagery and the variability in target species.35,36 Accordingly, the images
with low spatial and spectral resolutions relative to high-species diversity conditions lead to a
misrepresentation of the plant variability that potentially exists in a localized environment.
Therefore, it is important to find the balance between the scale of remotely sensed data and the
size of individual plant species by comparing images with different spatial and spectral character-
istics to enable accurate mapping of plant species in such environments.

Furthermore, the majority of savanna plant species classifications have been conducted in
wet periods when most plants are photosynthetically active (e.g., Refs. 20, 37, and 38).
Prominent differences in the chemical and structural composition of plant leaves during these
periods induce distinguishable spectral signatures allowing for effective discrimination among
plant species types.39 Weather variations between wet and dry periods alter vegetation leaf devel-
opment and senescence, with dry season exhibiting low foliage that may suppress the distin-
guishing traits among plants.40 However, ecological monitoring requires knowledge about
vegetation in dry season for a successful assessment throughout the year. Clear skies in dry
seasons provide the ideal scenario for high-quality optical remotely sensed data that can be used
for vegetation characterization. This has been demonstrated in a number of studies.38,41–43 One
notable example by Ref. 44 compared multiple images (Landsat and SPOT-5, moderate reso-
lution imaging spectroradiometer, and GeoEye-1) in the savanna environment. However, that
study focused on fractional cover estimation (quantifying the proportion of photosynthetically
active and nonactive vegetation), rather than plant species classification. There is a need to com-
pare multiple remotely sensed data to classify morphologically similar woody plant species in
dry seasons.

Therefore, this study aimed to investigate the performances of WorldView-2, SPOT-6, and
Sentinel-2A images in detecting several woody plant species (n ¼ 27) and coexisting land cover
types (bareland, grassland, and shrubs) in a savanna environment during a dry season. These
images have different spatial and spectral characteristics and therefore could provide an insight
into the optimal data characteristics needed for monitoring woody species diversity in savanna
environments. The study used an area with relatively high species diversity consisting of a mix of
young and mature narrow-leaved woody plant species.

2 Methods

2.1 Study Area

The Klipriviersberg Nature Reserve (KNR) located in Johannesburg, South Africa, was used for
the study (Fig. 1). The reserve was declared a nature conservation area in 1984 and covers
∼651 ha. In general, the vegetation types in the reserve include Andesite Mountain Bushveld
and Clay Grassland, which are associated with a savanna environment.45 The altitude of the area
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ranges between 1540 m in the south and 1790 m in the north, with a mean altitude of 1653 m.
The mean annual rainfall around KNR ranges from 624 to 802 mm promoting foliage and can-
opy cover in wet periods. The wet season, which is largely associated with photosynthetically
active plants, runs from November to March and the dry season associated with low foliage
occurs between May and October. The mean annual temperature ranges between 17°C and
26°C in summer and 5°C and 7°C in winter.46 The geology types found in the area, which lead
to the floristic structure of the reserve, include quartzites, conglomerates, and dolomites.47

2.2 Field Data

In this study, 240 points distributed at ∼170 m intervals in the north–south and east–west direc-
tions were generated in ArcGIS (ESRI® ArcGIS 10.6, Redlands, California). The point coverage
was exported into a global positioning system (Garmin, GPSMAP® 64, Kansas) and located in
the field. Field surveys were conducted from May to June, 2017, representing the dry period
in the study area.46 A buffer with a 20-m radius was created around each point, making a plot;
this size was specified to accommodate multiple pixels of the images used in the study
(WorldView-2, SPOT-6, and Sentinel-2A). Circular plots were preferred over rectangular plots
as they require only a single control point at the plot center.48 Furthermore, circular plots were
favored instead of angular shapes, since circular canopy shapes are more commonly witnessed in
a natural vegetation environment. In each plot, plant species with height ≥2 m and land covers
were recorded, with the record showing a minimum of one and a maximum of nine different
species per plot. Overall, a total of 27 different species and three land cover types (grassland,
bareland, and shrubs) were recorded in all plots. Additional structural attributes, such as species
canopy size and species richness, were recorded in each plot. These attributes were used to
confirm the assignment of a pixel to a class in an instance of mixed-pixel phenomenon.
Accordingly, a pixel was allocated to species that had the dominant canopy size falling within
that pixel. In the case of multiple plants with relatively small canopy sizes, the species with the
most occurrence determined the classification of that pixel.

Fig. 1 Klipriviersberg Nature Reserve and the distribution of sampling plots used in the study.
The background image was derived from a WorldView-2 image in false color composite (red,
band 6; blue, band 4; green, band 5).
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2.3 Remote Sensing Data and Preprocessing

WorldView-2, SPOT-6, and Sentinel-2Awere acquired on May 17, June 5, and June 10, respec-
tively, coinciding with the time of the field surveys. WorldView-2 image (DigitalGlobe)49 has
eight multispectral bands in the 0.40 to 1.04 μm region and a panchromatic band in the 0.45 to
0.80 μm (Fig. 2) measured at 1.8 and 0.46 m spatial resolutions, respectively. SPOT-6 image was
sourced from the South African National Space Agency (SANSA). The imagery has four multi-
spectral bands in the 0.45 to 0.89 μm and a panchromatic band in the 0.45 to 0.75 μm (Fig. 2)
measured at 6 and 1.5 m spatial resolutions, respectively. Sentinel-2A image was downloaded
from the European Space Agency Data Hub.50 Sentinel-2 has 13 multispectral bands (Fig. 2)
with four bands (0.49 to 0.84 μm) measured at 10 m spatial resolution and six bands measured at
20 m spatial resolutions. Prior to classification, the three images underwent atmospheric correc-
tion to ensure high signal-to-noise ratio. A comparison of atmospheric correction methods
between dark object subtraction (DOS)51 and fast line-of-sight atmospheric analysis of hyper-
cubes52 showed strong similarities between the two approaches (Pearson’s correlation, r ¼ 0.95).
Therefore, we applied DOS to all individual bands of each imagery in ENVI 5.3 (©2015 Exelis
Visual Information Solution Inc., Boulder, Colorado). Coastal bands were excluded due to the
relative sensitivity of those bands to atmospheric interferences.53 The remaining bands (7 for
WorldView-2, 4 for SPOT-6, and 10 for Sentinel-2A, Table 1) were subsequently pansharpened.
Notably this study utilized the Gram–Schmidt algorithm54 which maximizes image sharpness
and minimizes color distortions.

2.4 Training and Classification of Remotely Sensed Data

Training of 27 unique woody plant species as well as grassland, shrubs, and bareland classes was
performed on the three satellite images (WorldView-2, SPOT-6, and Sentinel-2A) separately.
It should be noted that as the spatial resolution becomes coarser, individual pixels are less likely
to capture small features resulting in mixed pixel phenomenon.39,55,56 This study adopted the
nearest-neighbor resampling technique on SPOT-6 and Sentinel-2A to resample the pixels to
the size of the WorldView-2 image (0.5 m). Nearest-neighbor resampling technique was chosen
because it does not alter values in the output raster data set and therefore appropriate for cat-
egorical data classification.57 Resampling to 0.5 m ensured exact subdivision of Sentinel-2A and
SPOT-6 images avoiding the mixing of information between neighboring pixels of the original
resolutions. By superimposing the three images, it was also confirmed that the offset in the pixel
locations never exceeded 0.03 m avoiding the spill effect of information into neighboring pixels.

Fig. 2 Spectral profiles extracted from satellite images used in the study.
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Similar sampling points were used for the three images to ensure direct comparability between
results. A total of 8011 points representing 27 woody plant species, grassland, shrubs, and bare-
land were digitized inside the 240 plots on the three satellite images separately. Digitizing of
points was guided by field surveys in which a local Cartesian coordinate system was used to
locate the species. Finally, points were split into two portions of which 30% (n ¼ 2408) were
allocated to training–classification and 70% (n ¼ 5603) to evaluate the accuracy of the classi-
fication. The spatial distribution of the training samples was taken into consideration when
selecting the training samples. The species along with the proportions allocated to the training
and testing of the classifications are given in Table 2.

Two machine learning classification algorithms utilized in this study are Random Forest (RF)
and Support Vector Machine (SVM). These classification algorithms were implemented using
the Caret package58 for R language.59 The RF classifier is an ensemble machine learning
approach, which utilizes bootstrap sampling to build multiple decision tree models.60 The
RF method was selected for this study due to the following reasons: (i) it can analyze large
datasets, (ii) it is free from normal distribution assumptions, and (iii) it is powerful when dealing
with outliers in the dataset.61 Internally, the RF uses two-thirds of the data (in-bag) for training
the classification model and the remaining one-third, which is referred to as out-of-bag data, to
evaluate the accuracy of the trained model.61 RF classifier utilizes ntrees (number of classifi-
cations trees) and mtry (a number of predicting variables) to generate a prediction model.60 In
this study, a 10-fold cross-validation analysis which was repeated 10 times was used to deter-
mine the optimal parameters. The explanatory power of the input variables (multispectral bands)
was quantified to rank the importance of each band for the classification accuracy.

The SVM approach classifies features (reflectance of different bands) by identifying optimal
decision (separation) boundary that maximizes the margin between two classes.62 The SVM,
such as the RF, does not require the data to have a normal distribution,63 and it performs well
when using high dimensional and complex data. This study used a nonlinear SVM technique,
i.e., radial basis function kernel that accommodates linear and nonlinear relationships between a
response and a predictor62 customized for R.64 The SVM classifier requires the specification of
two parameters to balance the accuracy and reliability of the classification.63 These parameters
include cost factor (C) and gamma (γ). The C factor relates to the penalty (cost) of misclassi-
fication error, and γ determines the influence of a training sample to capture the complexity in the
data.62 C and γ were also determined by running 10-fold cross-validation which was repeated 10
times similar to the approach applied for selecting optimal parameters of the RF. Training and
classification of the images were performed on 30% (n ¼ 2408) of the data using each satel-
lite image.

2.5 Accuracy Assessment

Classification results derived from the remotely sensed data (WorldView-2, SPOT-6, and
Senetinel-2A) were assessed on 70% (n ¼ 5603) of the data. Although the RF has an internal
evaluation system, we believe that the use of such a large independent sample dataset provides a
more convincing evaluation of the classification. An error matrix was used in the study that uses
overall accuracy, producer’s accuracy, and user’s accuracies statistics.65 The user’s accuracy
indicates the probability that classified woody species and land cover types on the map represent
the same category on the ground. This accuracy is thus calculated as the number of true obser-
vations of a class divided by the number of predicted observations. The producer’s accuracy
indicates the probability of a reference class being classified correctly, and it is calculated as
the number of true observations of a class divided by the number of true reference observations
of that class. Kappa coefficient statistic [Eq. (1)] was applied to evaluate the quality of classified
imagery.66 The kappa statistic is used to control the cases which might have been correctly clas-
sified by chance:

EQ-TARGET;temp:intralink-;e001;116;123Kappa coefficient ¼ Pobserved − Pchance

1 − Pchance

; (1)
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where Pobserved is the observed proportion of agreement and Pchance is the proportion expected by
chance.

McNemar’s test, which is a nonparametric and standardized normal test based on confusion
matrices in a 2 × 2 dimension,67 was also applied in this study. The McNemar’s test computed

Table 2 Illustration of the number of woody plant species used for training and evaluation of
classification.

Species name Code Leaf structure Training Validation

Acacia caffra AC Narrow-leaved 265 637

Acacia delabata AD Narrow-leaved 48 208

Acacia karro AK Narrow-leaved 177 252

Afrocanthium mundianum AM Narrow-leaved 120 160

Brachylaena rotundata BR Narrow-leaved 104 172

Celtis africana CAf Narrow-leaved 62 139

Celtis australis CAu Narrow-leaved 62 124

Cordyline australis CA Narrow-leaved 135 262

Dispyros natalensis DN Broad-leaved 50 284

Dombeya rotundifolia DR Broad-leaved 72 168

Ehretia rigida ER Narrow-leaved 103 207

Euclea crispa EC Narrow-leaved 75 138

Gymnosporia buxifolia GB Narrow-leaved 45 240

Heteromorpha arborescens HA Narrow-leaved 38 155

Kiggelaria africana KA Narrow-leaved 88 176

Melia azedarach MA Narrow-leaved 79 105

Olea europaea subs.africana OEa Narrow-leaved 66 175

Pittosporum viridiflorum PV Narrow-leaved 62 152

Populus x canescens PC Broad-leaved 36 147

Rhus lencia RL Narrow-leaved 59 141

Salix mucronata SM Narrow-leaved 104 151

Sambucus nigra SN Narrow-leaved 48 168

Searsia leptodictya SL Narrow-leaved 77 126

Searsia pyroides SP Narrow-leaved 67 157

Tarcchonanthus camphoratus TC Narrow-leaved 71 105

Zanthoxylum capense ZC Narrow-leaved 45 114

Ziziphus mucronata ZM Broad-leaved 70 184

Bareland BL No leaf 54 279

Grassland GL No leaf 73 133

Shrubs SH Mixed 53 144

Total — — 2408 5603
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using Eq. (2) determines the binary distinction between correct and incorrect class designation
by different images (Worldview-2, SPOT-6, and Sentinel-2A) using RF and SVM classifiers:

EQ-TARGET;temp:intralink-;e002;116;711Z ¼ ⨎ 12 − ⨎ 21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⨎ 12þ ⨎ 21

p ; (2)

where the square of z follows a chi-square χ2 distribution with 1 degree of freedom. ⨎ 12 rep-
resents the misclassified number of samples by RF classifier using WorldView-2 but classified
correctly by the same classifier using SPOT-6. ⨎ 21 represents the total number of samples
classified correctly by RF using WorldViw-2 but not classified correctly by RF classifier using
SPOT-6. This approach of pairwise comparison was applied to other images using SVM as well.

3 Results

3.1 Classification Accuracies Derived from WorldView-2, SPOT-6,
and Sentinel-2A

Figure 3 shows visual comparisons of woody species and coexisting land cover types using
Worldview-2, SPOT-6, and Sentinel-2A images classified using RF and SVM classifiers.
Overall classification accuracies of species and coexisting land covers derived from the three
images showed the best overall accuracy of 65% for WorldView-2 image, followed by
Sentinel-2A and then SPOT-6 using the RF classification (Fig. 4). Similarly, the SVM returned
classification accuracies derived from the three images in the same ranking order as the RF,
although the SVM had a lower accuracy for each image. Kappa coefficient statistics derived
from the same three images showed that WorldView-2 had the highest kappa coefficient value
of 0.63 followed by Sentinel-2A and then SPOT-6 using the RF classifier (Fig. 4). The kappa
values of the three images using the SVM classifier had the same ranking order as the RF clas-
sifier (Fig. 4).

Fig. 3 Visual illustration on the performances of RF classification using (a) WorldView-2,
(b) SPOT-6, and (c) Sentinel-2A; SVM classification using (d) WorldView-2, (e) SPOT-6, and
(f) Sentinel-2A images in classifying woody plant species and coexisting land cover types.
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Results from the McNemar’s test revealed statistically significant difference between the
accuracies of WorldView-2 (χ2 ¼ 9.15; p ¼ 0.002) and SPOT-6 (χ2 ¼ 6.34; p ¼ 0.007) when
RF classification was used. The difference between Sentinel-2A (χ2 ¼ 4.48; p ¼ 0.023) and
WorldView-2 images (χ2 ¼ 5.36; p ¼ 0.034) also were significant using the RF classifier.
Such statistically significant difference was also observed between Sentinel-2A (χ2 ¼ 4.75;
p ¼ 0.042) and SPOT-6 (χ2 ¼ 4.97; p ¼ 0.048). The SVM-based classification resulted in sta-
tistically significant difference between the accuracies of WorldView-2 (χ2 ¼ 7.15; p ¼ 0.03)
and SPOT-6 (χ2 ¼ 8.34; p ¼ 0.04). Similarly, the differences between Sentinel-2A (χ2 ¼ 4.48;
p ¼ 0.023) and WorldView-2 images (χ2 ¼ 5.36; p ¼ 0.034) were statistically significant using
the SVM classifier. However, the differences between Sentinel-2A (χ2 ¼ 0.75; p ¼ 0.142) and
SPOT-6 (χ2 ¼ 1.97; p ¼ 0.248) were statistically not significant using SVM.

Producer’s and user’s accuracies of individual plant species are shown in Fig. 5. The produc-
er’s accuracies ranged between 27% (Cordyline australis) and 83% (grassland) for different spe-
cies across the three images when using the RF classifier [Fig. 5(a)]. When using WorldView-2
image and RF, 20 species and coexisting land covers had producer’s accuracy exceeding 60%
with 10 of them having 70% or higher accuracies. Sentinel-2A and RF combination yielded pro-
ducer’s accuracies of >60% for 15 species and coexisting land covers, while the accuracy
exceeded 70% for seven species. Significantly, fewer species and coexisting land covers had good
accuracies when SPOT-6 was used with only four species having >60% accuracies. The SVM
classifier yielded producer’s accuracies varying between 14% (Heteromorpha arborescens) and
94% (Melia azedarach) across the three images [Fig. 5(b)]. Specifically, WorldView-2 image
returned producer’s accuracies exceeding 60% for 16 species and exceeding 70% for seven spe-
cies. The combination of Sentinel-2A and SVM resulted in quite low producer’s accuracy with
only eight species estimated at >60% accuracy while only two species scoring >70%. SPOT-6
and SVM combination fared better than SPOT-6 and RF combination but only marginally with six
and three species having >60% and 70% accuracies, respectively. The user’s accuracies ranged
between 31% (grassland) and 95% (Acacia caffra) across the three images using RF [Fig. 5(c)]
and from 11% (H. arborescens) to 92% (A. caffra) using SVM classifier [Fig. 5(d)]. Seventeen
species and coexisting land covers had user’s accuracy >60% and seven of those with >70%

using WorldView-2 and RF combination [Fig. 5(c)]. For Sentinel-2A and RF combination, 13
species had user’s accuracies exceeding 60% with five of those species having >70% accuracies.
Using the SVM classifier, the numbers of species identified at accuracies >60% were signifi-
cantly lower for the three images than what were obtained using the RF classifier; with the lowest
performance observed for Sentinel-2A image (Fig. 5).

Using the producer’s accuracy, which evaluates classification quality against the reference
(truth), we can compare the relative performance of each image against the other two in iden-
tifying species (Fig. 6). The WorldView-2 was better than Sentinel-2A for 16 species and

Fig. 4 Overall accuracies and kappa coefficient statistics for WorldView-2, Sentinel-2A, and
SPOT-6 using RF and SVM classifiers.
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coexisting land covers [Fig. 6(a)] with the relative improvement in producer’s accuracy ranging
between 1% and 38% for RF and 1% and 60% for SVM. The improvements exceeded 10% for
13 species using both classifiers. WorldView-2’s improvement over SPOT-6 was even more for
26 and 21 species and coexisting land covers using RF and SVM, respectively [Fig. 6b], with the

Fig. 5 Accuracies of identifying individual species using WorldView-2, Sentinel-2A, and SPOT-6;
(a) RF producer’s accuracy, (b) SVM producer’s accuracy, (c) RF user’s accuracy, and (d) SVM
user’s accuracy. Species names represented by the two-or three-letter codes are given in Table 2.

Fig. 6 Relative producer’s accuracy of an image over the other images in identifying species types.
Worldview-2 (WV), SPOT, and Sentinel-2A multispectral image (S-MSI) in the y axis represent
satellite images. Species names represented by the two-or three-letter codes are given in Table 2.
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improvement exceeding 10% for 15 or 14 species and coexisting land covers for the two clas-
sifiers. Notably, Sentinel-2A performed better than WorldView-2 for 13 (RF) and 11 (SVM)
species with the improvement exceeding 10% for six species [Fig. 6(c)]. Sentinel-2A’s better
performance over SPOT-6 was observed for 18 and 14 species using the RF and SVM classifiers,
respectively [Fig. 6(d)]. The relative performance of SPOT-6 over WorldView-2 was noted to be
better in four or nine species depending on the classifier [Fig. 6(e)]. SPOT-6 was advantageous
over Sentinel-2A for 12 or more species and coexisting land covers; this was the case more using
the SVM than the RF classifier [Fig. 6(f)].

3.2 Comparison of Images Based on Confusions

It is useful to evaluate the level of confusion of a species against other species in a localized area
with a diverse vegetation composition. Logically, the image that yields the smallest amount of
confusion among coexisting species is considered desirable. Detailed confusion matrices using
RF and SVM classification types are given in Table 3 in the Appendix A. Figure 7 provides the
count of other species and coexisting land covers against which a species is confused. The RF
classification clearly showed that the WorldView-2 identified nearly each of the species with
the least number of confusions with other species. Using this image, a species is confused
on average with 11 other species or land cover types, while 12 species were confused with
<10 species and coexisting land covers [Fig. 7(a)]. In contrast, Sentinel-2A confused a species
with an average of 18 species and coexisting land covers [Fig. 7(a)]. Despite an overall weaker
performance of Sentinel-2A, it had comparable confusion level with WorldView-2 for certain
species (e.g., Acacia karro and Dispyros natalensis) and fared better than WorldView-2 for
three species (Afrocanthium mundianum, C. australis, and Zanthoxylum capense). SPOT-6
created considerable confusion in identifying each species at an average of 24 species and
coexisting land covers confused with each species. The classification using SVM reduced the
discrepancy among the three images, compared with the RF classifier [Fig. 7(b)]. In particular,
the average number of species and coexisting land covers confused with any species was equal
for WorldView-2 and Sentinel-2A at 16 while SPOT-6 confused a species with an average

Fig. 7 Number of species confused against a given species for (a) RF and (b) SVM classifiers.
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number of 21 species, which is an improvement from 24 species and coexisting land covers
using the RF classifier. Notably, Sentinel-2A had a lower confusion rate than WorldView-2 for
16 species [Fig. 7(b)]—an improvement from only three species using the RF classifier
[Fig. 7(a)].

While the above comparison focused on confusion based on the number of different species, it
is important to compare images using the number of samples of each species that contributed
significantly to inaccuracies. We illustrate this using a select species for both RF and SVM clas-
sifiers, and exhaustive confusions are given in Table 4 in the Appendix B. To balance the com-
parison across accuracies, we selected species from three producer’s accuracy categories
including <60%, 60% to 70%, and >75%. Since the intention was to compare images, the
selected species in each category needed to satisfy the criterion using at least two images.
The selection was made based on the results presented in Figs. 8(a) and 8(b), for the RF- and
SVM-based producer’s accuracies, respectively. Figure 8 illustrates three selected species includ-
ing A. caffra (<60%), A. karoo (60% to 70%), andDombeya rotundifolia (60% to 70%), and how
their accuracies were affected largely by few species. Notable similarities were observed in terms
of species type that contributed to inaccuracies of identifying each species; for instance, A. caffra
was confused mainly with A. karro, Afrocanthium mundianum, C. australis, and grassland when
using RF [Fig. 8(a)] and SVM [Fig. 8(b)]. It is also noteworthy to mention the agreement between
the two classifiers in identifying the images with comparable confusions. For example, confusion
of A. caffrawith A. karro and A. mundianumwas noted when Sentinel-2A and SPOT-6 were used
exploiting RF and SVM classifiers. Although comparable images did not match consistently,
certain similar observations can be seen in the identification of species. This can be noted for
A. karoo whose inaccuracy was compromised by A. caffra, Celtis australis, and Ehretia rigida
for both classifiers [Figs. 8(c) and 8(d)] while D. rotundifoliawas confused mainly with A. caffra
and Ehretia rigida for both classifiers [Figs. 8(e) and 8(f)].

Fig. 8 Comparison of images based on number of samples contributing to confusions of three
selected species: (a), (b) A. caffra, (c), (d) A. karro, and (e), (f) D. rotundifolia and using the
RF and SVM classifiers.
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3.3 Band Importance of WorldView-2, SPOT-6, and Sentinel-2A Images

Variable importance, which measures the percentage that the prediction error increases when a
predictor variable is removed, was computed for each image using both classifiers in an attempt
to see the general trend in the contribution of individual bands [Figs. 9(a)–9(c)]. In general, there
was a strong similarity among the three images in terms of the important regions of the electro-
magnetic spectrum for RF and SVM classifiers. Infrared range bands had the most contributions
to the classifications for the three images (>50%) using both RF and SVM classifiers. For exam-
ple, the near-infrared (NIR) band alone contributed to 65% or greater accuracy in all the images
[Figs. 9(a)–9(c)]. There were also similarities among the three images in the contributions made
by the blue and green bands each of which contributed to <40% accuracy. Further similarities can
be noted between WorldView-2 and Sentinel-2A that have more spectral bands in the infrared
wavelength regions. For example, each of NIR2 and red edge bands of WorldView-2 and VRE
and SWIR bands of Sentinel-2A contributed>65% of the classifications. The SWIR1 and SWR2
available only in Sentinel-2A also made significant contributions to the classifications using both
classifiers [Fig. 9(b)].

4 Discussion

4.1 Performances of WorldView-2, SPOT-6, and Sentinel-2A

Numerous studies have applied remotely sensed data with relatively low spectral and spatial char-
acteristics failed to capture the true extent of localized plant species diversity.34,41,68 Therefore, this
study utilized WorldView-2, SPOT-6, and Sentinel-2A satellite images with improved spatial or
spectral characteristics to capture several woody plant species and generic land cover types
(n ¼ 30) in a localized savanna environment during a dry season. WorldView-2 image yielded
the highest overall classification accuracy (65%) using the RF classifier compared to other images
(Fig. 4). One advantage of WorldView-2 data is the availability of a significant number of spectral
bands present within a narrow spectral range.69 Such property allows for improved discrimination
of subtle differences among species in dry periods associated with low foliage, which may obscure
characteristic differences between species.40 The combination of improved spatial and spectral
characteristics offered byWorldView-2 image reduces the mixed pixel problem inherent in coarser

Fig. 9 The relative importance of the multispectral bands in classifying woody plant species
using RF and SVM derived from (a) WorldView-2, (b) Sentinel-2A, and (c) SPOT-6 images;
NIR, near-infrared; VRE, vegetation red edge; and SWIR, shortwave infrared band.
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spatial resolution and low spectral resolution images.53,55 Variability in overall classification results
of the three images might also have been influenced by different acquisition times of the three
images. Although the images were all collected in dry period, even minor variations in weather
conditions on different dates and times can result in variability of reflected radiation captured by
the satellite images70 thus contributing to a level of confusion in species identification.

Sentinel-2A image returned the second-best accuracy of discriminating the woody plant spe-
cies and coexisting land covers in this study (overall accuracy = 59%). This accuracy is encour-
aging, given the relatively coarse spatial resolution of Sentinel-2A (≥10 m) compared with
WorldView-2 (65%) and considering the large number of species targeted in the study. Our study
moderately agrees with Ref. 71 which used Sentinel-2A image to map 24 woody plant species
and reported accuracies >65%. A key advantage of Sentinel-2 over WorldView-2 is that it has
spectral bands in the SWIR region of the electromagnetic spectrum. Therefore, this advantage
has compensated for the loss in the spatial resolution of the image. SPOT-6 imagery achieved the
lowest accuracy (52%) of the three images used in the study. Although SPOT-6 imagery has
relatively better spatial information compared with Sentinel-2A, it lacks detailed spectral bands
particularly in the infrared regions that are suitable for differentiating plant species.72 A similar
inferior performance of SPOT image was reported by Ref. 34, which compared the accuracies of
Landsat (50%) and SPOT-5 (30%) in the classification of plants in a savanna region in Australia.
The producer’s and user’s accuracies generally corresponded with the overall accuracies in
showing the superiority of WorldView-2 image over the others (Fig. 5). It is important to note
that the above observations were somewhat similar for the RF and SVM classifiers, indicating
the reliability of the findings in ranking the three images irrespective of a classification approach.

A comparison among the performance of the three images using relative improvement of
producer’s accuracies clearly showed the superiority of WorldView-2 image followed by
Sentinel-2A and SPOT-6 as shown in Fig. 6. Specifically, the improvement of WorldView-2
over the other images in terms of producer’s accuracy was evident for many species and coex-
isting land covers. The advantage of WorldView-2 over Sentinel-2A was also reported by
Ref. 73, which estimated deciduous small spiral thin leaf oak plants (n ¼ 13). It is noteworthy
to mention the preference of Sentinel-2A over WorldView-2 for many species; this could be
attributed to the image’s spectral superiority. The vegetation type in the study area is dominated
by narrow-leaved plant species (Table 2) and limited chlorophyll content due to the dry season
conditions under which the data were collected. The combination of these factors necessitates
the use of imagery that has multiple and narrow bands such as those found in Sentinel-2A.32

The advantage of WorldView-2 over SPOT-6 agrees with Ref. 74 which reported better perfor-
mance of WorldView-2 compared with SPOT-5 image in classifying plant species in a savanna
vegetation environment, although they targeted fewer species (n ¼ 5). Comparatively, SPOT-6
performed better than the other images for quite a few species [Figs. 6(e) and 6(f)], understand-
ably due to the lower spectral qualities it possesses compared with the other images.

4.2 Confusion Levels of Images

In most cases, the classification using WorldView-2 (as opposed to the other images) resulted in
each species confused with the least number of different species particularly when the RF clas-
sifier was used [Fig. 6(a)]. The weakness of Sentinel-2A in this regard can be attributed to the
physiological characteristics of the vegetation in the study area of which >90% of species type
are narrow-leaved plants such asH. arborescens, A. karro, C. australis, etc. Narrow-leaved plant
species are difficult to discriminate using images with coarse spatial resolution images34,71 such
as the Sentinel-2A (10 to 60 m, spatial resolution) used in this study. Although SPOT-6 has a
relatively high spatial resolution, it still resulted in confusion among several species as well as
coexisting land cover types. It is important to note that deciduous species identified in the study
area lose their leaves during the winter period when the data for this study were collected.45 The
limited spectral capability offered by SPOT-6 is unlikely to differentiate species accurately.
Although SPOT-6 imagery has better spatial information than Sentinel-2A, the results show that
spatial information alone is insufficient to discriminate woody plant species accurately.

It is worth noting that the SVM classifier applied to Sentinel-2A resulted in lower mis-
classification of each species with other species when compared with the RF classifier. In fact,
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the improvement in general showed similarity of the image with WorldView-2. This can be
attributed to the spectral advantages of Sentinel-2A which divides the red-edge region into four
bands.75 The performance of Sentinel-2A comparable to WorldView-2’s is encouraging since the
former is widely and publicly available at no cost.

In identifying a species in a highly diverse savanna ecosystem, it is critical to pinpoint species
that have major contributions to misclassifications of a target species. The findings of this study
showed that few species created most of the confusions in the classification of the 27 woody
plant species, and these confusions are evidenced by at least two of the three images (Fig. 8).
Such confusions can be attributed to the similarity in foliage (leaf) characteristics of the species
inducing somewhat similar spectral responses captured by the three sensors in the study.73 This
suggests, among others, the need for advanced remote sensing systems with spectral and spatial
characteristics better than those used in this study.

4.3 Comparison of Images Based on Band Importance

Comparison of variable importance findings showed that the highest contributions from all the
three images in the analysis (WorldView-2, SPOT-6, and Sentinel-2A) and classifiers (RF and
SVM) were made by the infrared bands (Fig. 9). This finding is in agreement with Refs. 76
to 79 who discriminated narrow-leaved plant species in a savanna environment. The yellow band
of WorldView-2 image performed also performed well comparatively to infrared bands. This is
expected since the band is useful in detecting woody plant species with gray to yellow coloring
often present during dry periods in savanna environments.68 The significant contribution of the red-
edge band available in WorldView-2 and Sentinel-2A is related to the sensitivity of the band to
chlorophyll variations of even small narrow-leaved plants.80 The availability and significant con-
tributions of vegetation red edge bands in Sentinel-2A clearly places it at advantage over Landsat
imagery, which largely shares similar spatial and spectral characteristics with Sentinel-2A.

5 Conclusions

This study compared WorldView-2, Sentinel-2A, and SPOT-6 images to detect several woody
plant species in a savanna environment during a dry season. The image with the best spatial and
spectral characteristics (WorldView-2) performed better compared with Sentinel-2A and SPOT-6
images. The findings highlighted the effectiveness of multispectral images in detecting woody
plant species with similar foliage (or leaf) characteristics, although the level of greenness desired
in vegetation characterization using remote sensing was generally low. A comparative look at the
three images showed WorldView-2 to be the best followed closely by Sentinel-2A, which is avail-
able publicly at no cost. The comparability between the two images can be attributed to the higher
spatial resolution offered by WorldView-2 and better spectral qualities of Sentinel-2A. The supe-
riority in spectral qualities of Sentinel-2A resulted in the classification accuracies that were better
than those obtained using SPOT-6 which has a better spatial resolution but significantly lower
spectral qualities devoid of details in infrared regions of the electromagnetic spectrum. While the
results of this study are quite promising, it is important to acknowledge the need for improved
spatial and spectral resolutions to inform efficient species diversity monitoring strategies.

6 Appendix A: Classifier error matrix of WorldView-2, Sentinel-2A, and
SPOT-6 images using the RF classifier

Error matrix provides detailed description of the confusion in species classification using
WorldView-2, Sentinel-2A, and SPOT-6 images and RF classifier (Table 3).

7 Appendix B: Classifier error matrix of WorldView-2, Sentinel-2A, and
SPOT-6 images using the SVM classifier

Error matrix provides detailed description of the confusion in species classification using
WorldView-2, Sentinel-2A and SPOT-6 images, and SVM classifier (Table 4).
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