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Abstract. Knowledge of demographic data is valuable information for planning initiatives.
Typically, census, survey, and population projection exercises provide this information. In some
developing countries, these operations pose a variety of economic and logistical challenges,
thereby depriving authorities of accurate and timely information on their populations. To provide
approaches for solving this situation, our study evaluates a population estimation method that is
based on detection of residential geo-objects (houses) on very-high-resolution (VHR) satellite
images using convolutional neural networks (CNN). The approach would be applicable to coun-
tries where a complete census is difficult to perform due to resource constraints or political insta-
bility. A 2008 VHR satellite image of Sudan is annotated according to seven classes of buildings
to create a dataset that was used to train an object detection model, faster region-based CNN, by
transfer learning. The model obtained mean average precision of 79% and 99% during training
and validation, respectively. This unusual difference is due to the dominance of well detected
classes in the validation dataset. The model was fine-tuned to detect the same building classes on
images in 2021. A link between residential geo-objects and population size was established
using 2008 population data and available field data. Subsequent characterization of the current
population should assist in preparation of the 2023 census. Limitations of this approach were
raised, but it could be used to improve the framework for population data collection in devel-
oping countries. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.17.024506]
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1 Introduction

A population census is one of the most complex and costly statistical exercises that a nation can
periodically undertake.1 It provides information on the number and characteristics of a popu-
lation in terms of its density and spatial distribution, sex and age structure, and other fundamental
social and economic characteristics, including its housing conditions both nationwide and in
each locality. This information is frequently used to assess, for example, future demand for food,
water, energy, and services.2 The use of such data in development projects has the merit of saving
planners from the risks of poor targeting and poor design of development plans, for example.3,4

Conducting a census requires that a range of different challenges be overcome under diverse
circumstances.5 Although many industrialized countries establish population data collection
frameworks with rigorous solutions,6 censuses in many developing countries are not represen-
tative of the population, due to weak civil registration and vital statistics systems, for example.
They are expensive to conduct, are rarely conducted (at best every 10 years), and provide only
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population averages over large areas.7 Furthermore, in some of these countries, conflict and
violence affect population data collection operations. In this context, and in view of the diffi-
culties faced by the census services of the various countries, it is imperative to explore alternative
solutions for the collection of population data. Innovative modeling approaches, particularly
those based on Earth observation data, can produce population estimates that are of growing
interest in such situations.5

In low-income countries, census or polling managers are confronted by challenges, such as
difficulties in mobilizing financial and material resources, technical shortcomings in data
processing, socio-political crises, conflicts, and natural hazards, among others.4 This affects the
process of population data collection operations. In the absence of a census or population sur-
veys, population projection models are used to provide an overview of a country’s population
landscape.2 Yet, estimates are obtained by demographic models, which in some cases do not
reflect relevant social indicators or they lack reliability.8 When faced with challenges that are
related to data collection in these problematic situations, the following question arises: how does
one go about collecting alternative data? Important technical advances in geomatics can offer
various solutions. Remote sensing data have been used in several studies to assess population
density at multiple scales.9–14

The number of people living in an area cannot be observed directly from remote sensing data,
but the latter can be used as a tool for detection and determining population density estimates.
Currently, very high resolution (VHR, 30 to 50 cm) satellite images can provide very detailed
ground information and, therefore, are well suited to the detection and analysis of human
activity.15,16 Nevertheless, extracting objects such as buildings from remotely sensed images
is an important task with many applications, but it also remains a challenging task due to very
large variations in the shape and features of buildings.17 Image processing operations, such as
filtering, edge detection, or segmentation, have been proposed for this purpose.18,19 Yet, none of
these methods provide an unambiguous answer as to the precise location of buildings, let alone
their properties.16 Due to the advantages of accurate building detection in VHR satellite images,
work on building detection models has accelerated considerably since the introduction of neural
networks. These research efforts have grown even more dynamically since 2013, when convolu-
tional neural networks (CNNs) were first introduced into image processing. CNNs have
improved several image analysis applications, including object detection20–22 and semantic
segmentation.23–27 With the development of these efficient deep-learning algorithms, it has
become possible to achieve high accuracy when performing remote sensing analysis on
VHR images, especially in the context of building detection and classification.16 This study aims
to contribute to better estimation of the population by an approach using detection of building
classes on VHR satellite images using CNN architecture, more specifically faster region-based
CNN (R-CNN). The approach is applied to Sudan, a country where a complete census is difficult
to conduct due to resource constraints and political instability. Specifically, the study aims: (a) to
detect the types of residential geo-objects (houses) on VHR images by proposing an adequate
taxonomy and an adapted CNN architecture; (b) to establish a link between each class of res-
idential geo-objects and the average number of inhabitants, based upon an old census (2008); and
(c) to estimate the population from recent VHR images.

2 Materials and Methods

2.1 Study Site

The study site is Sudan, which is the second largest country in Africa (1.86 million km2). The
2008 census is the most recent source of population data. These data are old and not very useful
for planning purposes. The ever-changing socio-economic and demographic structures of the
country, which were brought on by war that has lasted for more than two decades, merit attention
respecting the issue of population data collection for this vast nation. Sudan has a vast area,
diverse topography, and varying climatic conditions across its land surface. Its socio-political
structure is complex given its socio-cultural fabric, which is characterized by a multifaceted
tribal, ethnic, and religious composition. Different levels of development between regions are
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easily discernable. All these aspects make the census a very difficult undertaking, especially
under conflict or postconflict conditions. The high mobility of the population within the country
and neighboring countries, the very high number of internally displaced persons, and the widely
dispersed nomadic population add another dimension to the complexity of a comprehensive
census project (source: Ref. 28).

In this study, we focus upon the principal urban area of the country, i.e., Greater Khartoum.
This tripartite metropolis has more than five million inhabitants, who dwell in the capital
Khartoum, which is joined by bridges spanning tributaries of the Nile to North Khartoum and
Omdurman; Omdurman is the second largest city in the country in terms of population (Fig. 1).
This municipality was chosen because of its representativeness of different urbanization den-
sities, together with the availability of population data and VHR satellite images from 2008.

2.2 Data

2.2.1 Population data: 2008 census

The main population data that were used is the 2008 census database. The file, which is in .shp
format, contained the administrative divisions of the country, the division of certain large
agglomerations into enumerated areas (EA), and the population sizes that were associated with
these different divisions. Data on population size (per household) and housing characteristics
were used, which had been collected during various surveys and polls that were conducted after
the 2008 census.

2.2.2 VHR satellite images

The choice of search areas for VHR images corresponding to the 2008 census was based on the
density of buildings/population, following verification of field data (photographs and videos), on
Google Earth and on OpenStreetMap. Four subareas of interest were considered given the avail-
ability of good quality VHR images, which were provided at that time only by QuickBird
(Fig. 1). This image (65 cm QuickBird with pan-sharpening) was acquired on January 16,
2009, which was close to the census year (hereafter, referred to as the 2008 image).

Fig. 1 Location of the study site in Greater Khartoum, Sudan.
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The recent VHR image that was used to estimate the population and guide future censuses is
a Pleiades image (50 cm with pan-sharpening) that was acquired on January 4, 2021. Figure 2
shows an example of built-up areas on the two types of VHR images that were used (QuickBird,
2009; Pleiades, 2021) in a residential area of Greater Khartoum.

2.2.3 Taxonomy and constitution of the dataset

To our knowledge, no semantically rich, annotated building detection dataset exists that takes
into account the realities of our study area. Therefore, we constituted our own dataset for training
the neural network.

Exploration of the 2008 census data allowed us to establish a taxonomy of residential geo-
object classes (houses) according to the number of inhabitants per unit (Table 1). The data
included a “household questionnaire” (housing characteristics), an examination of the VHR
images, the state of the art, the images and photographs that were available on Google
Earth, as well as field data (photographs taken on site).

Fig. 2 Extracts of VHR images: (a) QuickBird from January 16, 2008 and (b) Pleiades from
January 4, 2021.
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Figure 3 illustrates the key to interpreting the taxonomy of different classes that were
selected. Image preprocessing consisted of an enhanced QuickBird image in the RGB
composite; this step was performed the match the RGB format of the datasets that were used
in the CNN. Images were then sliced and converted to an unsigned 8-bit format, which was
compatible with the libraries and faster R-CNN model that was used.

Manual annotation of residential geo-object classes, which were clipped to 10 QuickBird
image areas of interest using a GIS tool (QGis), resulted in a .shp file with ground-truthed bound-
ing boxes that mark terrain coordinates, while specifying class and probability of the object. The
images of these areas of interest have been cut into thumbnails of 300 × 300 pixels, with 50%
overlap between them. This overlap is applied so that information is not lost should a building be
cut between two images. Due to the very limited quantity of annotated data, it was necessary to
perform data augmentation (flips, and 90 deg and 270 deg rotations), which is a practice that is
widely used with CNNs.29 A total of 556 300 × 300 pixel thumbnails, covering 2413 annota-
tions, were used for training (80% of the data) and validation (20% of the data) of the faster R-
CNN model. They are distributed according to Table 2, which summarizes the class structure of
the dataset. A large imbalance characterized the distribution of classes with an imbalance ratio
(number of majority annotations/number of minority annotations) of 93.6. The distribution has
been assigned in such a way that a thumbnail image and its versions resulting from the aug-
mentation are found in the same dataset. The situation where an image seen in training is found
during validation is thus avoided. Figure 4 shows examples of annotation of different classes of
residential geo-objects.

2.3 Methodology

2.3.1 Detection of residential geo-objects by deep learning

The irregular nature of buildings in the study area and the difficulty of recognizing house classes
in VHR images make the annotation task difficult. Judicious photo interpretation was necessary
to provide a good dataset on which the detection model can be trained. The faster R-CNN
model,30 which has been shown to perform well in computer vision applications,22,31 was used.
With the generalization capabilities of pretrained models, for example, PASCALVOC-201232 in
the case of faster R-CNN, it is possible to commence training from prior knowledge rather than
starting from scratch.29 Our residential geo-object detection approach is an application of this
transfer learning technique.33

Table 1 Description of different classes of residential geo-objects (houses).

Classes Description

Class 1: Single-storey house Structure without upper floors. May consist of several buildings
forming an inhabited unit. Either a single- or multifamily dwelling.

Class 2: Two-story residential house Dwelling with a ground floor and an upper level. Could consist of
small, single-story buildings next to a large building with upper
floor. Could be a single- or multifamily dwelling.

Class 3: Multilevel residential house Ground floor plus 2 to 5 upper stories.

Class 4: Semi-commercial/residential
house

Commercial buildings. Building generally divided into two:
one part commercial, one part housing. It could be
single-story or multilevel.

Class 5: Nonresidential house Buildings not used for housing, e.g., schools, services, etc.

Class 6: Tall building Large building exceeding five stories, approximate.

Class 7: Other Places of worship and any residential structure,
the membership of which cannot be established
in any of the preceding classes.
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The operation of faster R-CNN is based on three main components. (a) The first component is
a pretrained model (i.e., backbone), the goal of which is to extract deep features from the input
image. The convolutional neural network (ResNet50) was selected for the task after various tests
of network depths; this particular network is 50-layers deep. (b) The second component is a
region proposal network,31 which generates bounding boxes in the input image, followed by
a bounding box pooling layer that projects the attributes extracted by the backbone to a vector

Fig. 3 Interpretation key for annotating house classes: (a) single-story house, (b) two-story house,
(c) multistory house, (d) semicommercial house, (e) nonresidential house, (f) tall building, and
(g) other.

Table 2 Distribution of annotations according to the class of residential geo-objects.

Residential geo-object class Number of annotations % annotation

1. Single-story house 1405 58.2

2. Two-story house 765 3.7

3. Multistory house 75 3.1

4. Semicommercial/residential house 90 3.7

5. Nonresidential house 15 0.6

6. Tall building 17 0.7

7. Other 46 1.9
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and, finally, the application of classification and regression operators. (c) The third component is
a classification operator that is combined with a regression operator to estimate the probability of
each bounding box as belonging to a class (thanks to the classification operator) and to refine its
final positioning (thanks to the regression operator). The cross-entropy loss function in Ref. 31
was used. Since our class distribution was not very homogeneous, the technique that was used by
Ref. 34 is adopted, which consists of weighting the class loss function. The function was esti-
mated as the total number of annotations per thumbnail, over all classes, divided by the total
number of annotations per thumbnail of each class; 1 is subtracted from the result. We obtained
the following weights: 1 (background); 0.41 (class 1: single-story house); 0.68 (class 2: two-
story house); 0.96 (class 3: multistory residential house); 0.96 (class 4: semicommercial/semi-
residential house); 0.99 (class 5: nonresidential house); 0.99 (class 6: tall building); and 0.98
(class 7: other). As is the case with hyper-parameters, we used the Adam stochastic gradient
optimizer35 with a learning rate of 0.0001 and a batch size of 10 thumbnails. Windows 11 and
the Torchvision library from PyTorch were used as the computing framework. The computer that
was used was equipped with an Intel Core i7 CPU and a Nvidia RTX GPU with 16 GB of
memory.

2.3.2 Detection evaluation

The evaluation of the performance of our detection approach is achieved using mean average
precision (mAP) in a multiclass detection system.36 AP is a widely used metric in many object
detection applications, where its values are calculated over recall values ranging from zero to
one. Recall that “recall” is calculated as the number of true positives, divided by the sum of true
positives plus false negatives. Computation of mAP thus involves important submetrics, such as
recall, precision, intersection over union (IoU), the precision recall curve (PRC), and a confusion
matrix.36 The GitHub page by Rafael Padilla (https://github.com/rafaelpadilla/Object-Detection-
Metrics) should be consulted regarding details of this metric and its concepts. Given the com-
plexity of the built environment in the Greater Khartoum area, an IoU ≥ 50% was used in our
study. Furthermore, PRC evaluates classification tasks better with unbalanced data,37 which jus-
tifies its selection for our study.

Fig. 4 Different types of annotations of residential geo-objects on VHR thumbnails.
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2.3.3 Generalization of the model in the 2008 image

Once the model is trained, inferential detection is performed over the entire 2008 image.
This allows characterization of the buildings across the whole study area and uses these to
establish the “house–population” relationship from the 2008 census.

2.3.4 Characterization of residential geo-objects from the 2021 image

The faster R-CNN model that was trained on the 2008 QuickBird image is used to detect houses
in the 2021 image, after fine-tuning. Thus, annotations were performed on the 2021 images. In
total, 2861 annotations were made, with proportions per class relatively similar to those of 2008.
Unsurprisingly, they were made in the same areas as the 2008 image. The increase in the number
of annotations on the 2021 image is explained primarily by the appearance of new buildings
between 2008 and 2021 (see Fig. 2).

2.3.5 Population estimates

The 2008 census data provide a population count at the enumerated area (EA) level. These data
were used to establish a “house–population” relationship. An average population factor is
determined by residential geo-object class using the population data by EA from the 2008
Census according to the following equation

EQ-TARGET;temp:intralink-;e001;116;487ðN1 · μ1Þ þ ðN2 · μ2Þ þ : : : þ ðNi · μiÞ ≈ EApop; (1)

where

EQ-TARGET;temp:intralink-;sec2.3.5;116;443Ni ¼ number of geo − objects per class i; μi ¼ average population size for class i; and

EApop ¼ population size at the scale of the enumerated area:

For example, if EA1 contains 100 residential geo-objects of class 1, 50 of class 2, and 0 of the
other classes, and EA1 has a population size of 600 according to the census, a possible solution
might be that μ1 ¼ 5 and μ2 ¼ 2 (600 ¼ 100 × 5þ 50 × 2). Choice of a likely solution is guided
by the dominance of each house class in the EAs. Thus, all EAs are traversed to estimate μ that
was found for each class while taking into account information from informal household sur-
veys. We assumed that the household size per house class (μi) did not change between 2008 and
2021, having found no evidence for this.

3 Results and Discussion

3.1 Detection of Residential Geo-Objects

3.1.1 On the 2008 image

The faster R-CNN network was trained over 20 epochs. Figure 5 shows the mAP curve as a
function of each epoch (i.e., one cycle or pass through the full training dataset). Following an
increase in mAP during the first 10 epochs, the pattern achieved a stable plateau. The final mAP
that was recorded at the end of the 20th epoch was about 79% during training and about 99%
during validation. Loss reached 0.12 by the end of 20 epochs of training. Note that the
constitution of the training and validation datasets was done randomly on the annotated thumb-
nails. However, the validation set contains almost instances of the majority classes (1 et 2) on
which the model has very well performed in training. Since these are the instances that the model
sees more in validation, the mAP in validation becomes higher than the mAP in training.

Given that training curves remain stable after a number of epochs reflects nonrepresentative-
ness in the dataset,38 a nonrepresentative dataset may not capture statistical characteristics rel-
ative to another dataset that is drawn from the same domain, such as between training and
validation data. This can usually happen if the number of samples in one dataset is too small
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compared with another dataset. Two common cases could be observed: (a) the training dataset is
relatively unrepresentative; or (b) the validation dataset is relatively unrepresentative. In our par-
ticular case, it is the validation dataset that is poorly represented.

The precision–recall curve (Fig. 6) shows that six of the seven residential geo-object classes
are well detected by the model, with precision ranging from 84% to 100% (Table 3). Detection of
Class 5 (“nonresidential house”) seems to be difficult, with an AP ¼ 25%. Note that this is the
least represented class in the dataset (< 1%). In general, the area under the precision–recall curve
shows a large area between the curves and the baseline. This translates into perfect performance
of the model and, therefore, appropriate functioning of the classifier, with a mAP of 79.46% for
all seven classes.

In comparing the AP of each class to the distribution of class annotations (Table 2), the model
clearly detects classes that appear more frequently in the training dataset and has difficulties for
classes that appear less frequently. The detection performance of our approach is limited by the
class imbalance.

Figure 7 shows the confusion matrix, which is a convenient and intuitive way of evaluating a
model with respect to its detection performance on individual classes. In the case of a multiclass
classification, a false negative in one class according to the prediction will be a false positive of

Fig. 6 Precision of detection for different house classes.

Fig. 5 Evolution of precision during training and validation, and loss in training for the faster
R-CNN model.
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the other classes, i.e., false negatives are found in the rows (observed) that are associated with
each class, and false positives are in the columns (predicted) that are associated with each class.

Classes 1, 2, 3, 4, and 5 are better detected than 6 or 7, with success rates exceeding 60%. Yet,
it should be noted that some confusion in detection persists among classes. The most important
ones are: (a) class 7 (“other”) versus class 1 (“single-story house”), with 54% of class 7 confused
with class 1; (b) class 6 (“tall building”) versus class 7 (“other”), at 43%; and (c) between class 4
(“semicommercial/residential house”) versus class 1, at 24%. Some classes have a detection rate
below 60%. Other less important confusions are observed between several classes, reflecting the
inability of the model to correctly detect certain types of buildings. Figure 8 shows examples of
(a) and (b) good detections and (c) and (d) bad detections.

In general, large area geo-objects (e.g., nonresidential houses, schools, services, and mos-
ques, among others) are not well detected. These geo-objects are often a collection of other
classes. Occasionally, the model detects these classes individually in this case, rather than the

Fig. 7 Detection confusion matrix of the seven residential geo-object classes.

Table 3 Average precision (AP) among classes of residential geo-
objects.

Residential geo-object class Average precision (%)

1. Single-story house 94.67

2. Two-story house 85.38

3. Multistory house 86.73

4. Semicommercial/residential house 84.27

5. Nonresidential house 25.00

6. Tall building 100.00

7. Other 80.20
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set forming a distinct geo-object [circled in Fig. 8(d)]. Another explanation could be that the area
of these geo-objects is larger than the size of the patches (300 × 300 pixels) that were cut to train
the model. The corresponding annotations are cut into several patches, thereby preventing the
model from properly learning how to recognize these residential geo-objects.

Major confusion between class 1 and 7 (54%) could be explained by the very definition of the
latter class. Indeed, class 7 is designated “other,” given that it consists of a set of buildings for
which identification was problematic during the annotation process. Class 1 geo-objects have
characteristics in common with structures annotated in this seventh class; hence, the confusion
that arose during detection. We also noted “empty fences” throughout the study area, i.e., parcels
enclosed by a perimeter fence where the interior was empty, giving the appearance of a resi-
dential geo-object. The model detects these objects as constructed (either class 1 or class 7), but
occasionally as background. This increases the confusion between classes 1 and 7.

3.1.2 On the 2021 image

Fine-tuning of the model on the Pleiades image resulted in detections of residential geo-objects
in 2021 on all four subareas of the study site. Figure 9 illustrates detections, along with a zoomed
inset of a residential area as an example.

3.2 Population Estimates

3.2.1 Population estimated for 2008

Analysis of the “house–population” relationship was performed on 87 EAs. Figure 10 shows the
distribution of the numbers of each class detected by each EA and the average population/house
ratio. The most dominant class among EAs is class 1, followed by classes 7 and 2. The average
population/house ratio across the AEs varies greatly, ranging from 1.4 (likely an error in the
census database) to 19.1 (likely a very special case).

Fig. 8 Examples illustrating detections with faster-R-CNN on the 2008 QuickBird image: (a) and
(b) good detection. (c) and (d) bad detections.
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We further note that variation in the average population/house ratio is related to the domi-
nance of a class in an EA. The principle of the method for estimating this ratio is based on finding
the EAs with a single dominant class and estimating its ratio, then looking for EAs with a second
dominant class and evaluating its ratio, and so on.

The dominant classes that were detected are 1, 7, and 2, respectively. Their degree of
dominance is related to variation in the population/house ratio. We note that for EAs with
90% dominance of class 1, the population/house ratio varies between 9 and 13. When class
7 is important (EAs with 35%), variation ranges between 4 and 9. When class 2 reaches
25% in the EAs, we observe a population/house ratio that varies between 4 and 7.

The different variations in the population/house ratio guided the choice of the μ factor
(average population size per class), starting with the dominant classes and rejecting implausible
extreme/erroneous values. For the other classes, estimation of μ is based on Eq. (1), while
considering the data that were reported by field specialists. Thus, the μ-factors per residential
geo-object class are as shown in Table 4.

Applying these different average sizes to all houses that were detected across all EAs yields a
good correlation between the total population of EAs and the total population of all houses in that
EA, as shown in Fig. 11, with the exception of some EAs that were investigated.

Analysis of Figs. 10 and 11 reveals three main sets (Table 5): (a) 6.9% of houses with μ > 2;
(b) 87.36% of houses with μ between 4 and 14; and (c) 5.75% of houses with μ < 15. The set
in case (b) corresponds to the range of population sizes per house that were generally reported
in the field. The two possible outlier groups could likely be attributed to data errors, as
discussed below.

We note the EAs that were of concern are all found in the same zone for each set (Fig. 12).
EAs with a population/house size ratio < 2 are very close to an area where population data for
some EAs are missing from the census database. Estimates for the population data that were
captured in these EAs are likely erroneous (Fig. 12, in blue, EAs with missing data in the data-
base and in black, EAs with probably erroneous data).

EAs with a population/house size ratio > 15 originate from areas where division of EAs is
often difficult. In general, several enumerators are placed in these areas for systematic surveying,
with the risk of double counting. Population estimates in these EAs are often high compared to

Fig. 9 Detection of residential geo-objects on Pleiades images from 2021 (on the ensemble of
certain RoIs and extract of RoI).
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Table 4 Estimated mean sizes by residential geo-object class.

Residential geo-object class μ

1. Single-story house 13

2. Two-story house 9

3. Multistory house 7

4. Semicommercial/residential house 5

5. Nonresidential house 2

6. Tall building 5

7. Other 7

Fig. 10 Distribution of each class population/house ratio by EA.
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Table 5 Variation in population/house ratios of EAs.

Population:house Number of EAs % EA

≤2 6 6.9

4 to 14 76 87.36

≥15 5 5.75

Fig. 12 Illustration explaining EAs with bad population data: (a) EAs with missing data and (b) EAs
with probably erroneous data.

Fig. 11 Correlation of total EA population and total population per house.

Kpegouni et al.: Application of deep-learning techniques to very-high-resolution satellite images supporting. . .

Journal of Applied Remote Sensing 024506-14 Apr–Jun 2023 • Vol. 17(2)



the average. Population sizes of 25,298 and 10,739 are observed in the EA of this zone
[Fig. 12(b)].

3.2.2 Population estimated for 2021

Applying the model to the 2021 images resulted in detections of residential geo-objects in 2021
across the study site. Some examples at the scale of an EA are shown in Figs. 13 and 14. Tables 6
and 7 show an estimate of population in 2021 in these AEs by applying the average population
sizes by house class determined above. The same value of the μ-factor (average population size
per class) has been used (in the absence of a reliable update). The increase in population is
therefore due to new residential developments that are revealed in the 2021 image.

Fig. 13 Example 1 of detection for 2021.

Fig. 14 Example 2 of detection for 2021.
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4 Conclusion

Our study developed a method for estimating populations at the residential unit scale from VHR
satellite images and a CNN. Residential geo-objects (houses) in our study were located in
Khartoum, Sudan and were difficult to classify using a taxonomy related to residence type and
number of inhabitants (large intraclass variation, little interclass variation). The CNN detection
approach required manual annotation of all houses according to an established taxonomy that
respected the observed built environment in the study setting. Use of a pretrained network helped
to overcome the small size of the available dataset. To rectify the class imbalance, a weight
adjustment was used. The model under these conditions obtained an mAP of 0.79. The deter-
mination of an average population size per detected geo-object class allowed for population
estimation at different scales.

The methodology that was developed here offers an alternative, based upon Earth observa-
tions and artificial intelligence, to estimate the population in developing countries where census
operations, surveys, and population projections pose various economic and logistical challenges.
As another example of application, this methodology can be used for a better division of a
territory into census units and the production of field sampling scenarios to guide population
surveys and polls. Therefore, it could be adopted by international organizations in their socio-
demographic information collection activities.

Table 6 Example 1 of population estimation for an EA.

Classes Bldg./EA μ 2021 Pop_estimate

Class 1 337 13 4381

Class 2 77 9 693

Class 3 16 7 112

Class 4 14 5 70

Class 5 0 2 0

Class 6 0 5 0

Class 7 16 7 112

Total estimate_pop_2021 5368

Total pop_2008 4663

Table 7 Example 2 of population estimation for an EA.

Classes Bldg./EA μ 2021 Pop_estimate

Class 1 397 13 5161

Class 2 42 9 378

Class 3 10 7 70

Class 4 26 5 130

Class 5 0 2 0

Class 6 1 5 5

Class 7 17 7 119

Total estimate_pop_2021 5863

Total pop_2008 5275
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The study has limitations that must be raised and resolved for the implementation of a reliable
tool in practice. First, the study faced the difficulty of defining consensus taxonomy of residential
geo-objects. The difficulty lies in environmental heterogeneity with respect to habitat. The
houses in the study environment exhibit great variability in shape, size, and neighborhood,
among others, making their identification difficult. Further, the data that were used (50 cm res-
olution images) do not easily permit recognition of the type of buildings for a better annotation,
whereas 30-cm images (WorldView-3 and Pleiades Neo) would likely have yielded better results.
Second, the model was not able to distinguish among some classes, leading to confusion during
detection. Finally, to improve the detection process, a larger sample size is needed to train and
test the model. Therefore, it is possible to improve our method by: (a) examining the built envi-
ronment of the study area in greater detail; (b) collecting more field data; (c) adding more anno-
tations; (d) using a newer and better CNN for performing object detection; and (e) using 30-cm
images, such as WorldView-3 and Pleiades Neo.
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