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ABSTRACT. Non-ponded aerobic rice offers the opportunity for substantial global savings of
irrigated water. Site and environment specific soil tension thresholds have been
identified for non-ponded rice production to save water without adverse yield
consequences. However, soil tension readings are point-source measures that are
not necessarily representative of a given irrigation area/paddy and become costly
when required in each paddy. Remote sensing offers spatial advantages and has
been demonstrated in many crops to accurately estimate crop evapotranspiration
(ETc), which is often used to schedule irrigation. This study uses soil moisture
tension (SMT) data measured in a commercial aerobic rice experiment conducted
in temperate Australia on a heavy clay soil to demonstrate the relationship between
soil tension and remotely sensed estimated cumulative ETc between irrigation
events using open access satellite imagery. The model was used to predict SMT
in the second growing season during the vegetative period after establishment until
PI with a root mean squared error of �5.8 kPa. This demonstrates the ability of
irrigators to schedule irrigation in water saving rice using open satellite-derived data
that can be incorporated into an automated irrigation system, without the need
for costly in-field soil moisture sensors. Future research to integrate forecast
crop evapotranspiration could enable soil moisture forecasting days in advance,
providing irrigators more time to plan irrigation activities.
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1 Introduction
Rice cultivation strategies that reduce or eliminate the period of permanent flooding have
been demonstrated to significantly reduce irrigated rice water use,1–12 paddy rice methane
emissions,13–16 and arsenic concentrations.3,16 However, a higher degree of irrigation manage-
ment and infrastructure is required at both the farm and system levels, when compared with
continuously flooded rice.17 In areas with timely capacity to control irrigation water, knowledge
of when to initiate irrigation is required to avoid detrimental water stress. Extensive research has
been conducted to determine the extent of soil moisture deficit to optimize water productivity
(the amount of crop produced per unit of water) in alternate wetting and drying (AWD), in which
water levels decline below the soil surface prior to shallow reflooding, and aerobic rice in which
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rice is grown in the absence of flooded/permanent water. The water table depth and soil moisture
deficit are the most widely used parameters to initiate irrigation in such water saving cultivation
techniques.

Soil moisture tension (SMT) refers to how tightly water is held to the soil and is measured in
units of pressure (kPa). Values higher than −10 kPa indicate saturated soil, with increasingly
negative numbers referring to increasing tension and energy required for the plant to extract
water. Irrigation to maintain rootzone ***SMT > −10 kPa is believed to not adversely affect
rice yields.18 However, suitable equipment to monitor SMT is often not available for many farm-
ers. As such, “AWD safe” has been recommended by the International Rice Research Institute;
this involves applying irrigation when the perched water table (measured by in-field water tubes/
pani-pipes) falls to 15 cm below the soil surface.19 This threshold was devised to ensure no yield
penalties. However, irrigation thresholds varying from −10 kPa to beyond −90 kPa have been
demonstrated in aerobic and AWD rice to maintain yields comparable to that of flooded
rice.4,5,9,10,20–22 Such variability in irrigation thresholds exist as a result of the duration and fre-
quency of water stress, ground water table, cultivar selection, and environmental conditions.1,5,23

These aforementioned characteristics and the management objectives (maximizing water produc-
tivity, yield, quality, labor input, etc.) will determine the irrigation regime. Therefore, in certain
environments and conditions, it may be possible to extend SMT beyond the conservative “safe”
limit. However, water and heat stress during the reproductive period often result in yield
decline;5,24 therefore, the research presented here focuses on the vegetative period.

Although soil moisture sensors have been used in commercial settings to schedule irrigation
in rice,25 point-source measures provide poor spatial replication, with commercial farms requir-
ing multiple sensors per field, adding significant cost.26,27 Further, soil cracking around the
sensor, particularly in heavy clay soils, can limit the reliability of sensor data.28 Remote sensing
can offer spatial advantages over point-based sensing in field sensors and has been demonstrated
to estimate soil moisture; however, the accuracy of the direct estimation of soil moisture for
irrigation scheduling requires improvements, according to Liang and Wang.29 Although not yet
developed to accurately estimate soil moisture for irrigation scheduling at a sub-paddock
level, remote sensing to estimate crop evapotranspiration (ETc), which is then used to schedule
irrigation in broadacre agriculture, is well established, e.g., IrriSAT and evapotranspiration flux
(EEFLUX).30,31 Using the FAO56 approach explained in more detail in Allen et al., crop water
need, known as ETc, is calculated as a product of reference evapotranspiration (ET0) and a crop
coefficient (kc), as given in the following equation:32

EQ-TARGET;temp:intralink-;e001;114;340ETc ¼ ET0 × kc: (1)

ET0 refers to the rate of evaporation of actively growing well-watered grass of uniform height
(12 cm) that completely shades the ground of a large area with a fixed surface resistance.32 Thus,
ET0 is only dependent on climatic factors that can be measured by a weather station. kc is used to
account for the crop factors such as ground cover, crop architecture, and aerodynamic resistance
under standard conditions.32 kc is invariably difficult and costly to measure at a sub-paddock
basis; however, it can be estimated using high spatial and temporal resolution remote sensed
data to calculate vegetation indices. Specifically, the normalized difference vegetation index
(NDVI) is linearly correlated to kc.

33 This approach is often used in drop/sprinkler irrigated per-
ennial crops with irrigators using estimated ETc thresholds since last irrigation to schedule irri-
gation and determine the quantity of irrigation water required.34,35 Further, in broadacre surface
irrigation, growers of crops such as wheat and cotton use cumulative ETc as calculated by remote
sensed decision support tools, such as IrriSATand EEFLUX, to schedule irrigation.30,31 However,
this is not currently possible in rice as ETc irrigation thresholds for water saving rice are not
known, nor is the relationship between ETc and SMT in water saving rice systems despite36

reporting a relationship between in-field sensed SMTand satellite derived ETc between irrigation
events in cotton.

SMT decline during non-ponded periods of rice cultivation is hypothesized to be correlated
to the cumulative ETc between irrigation events. However, due to the changing nature of soil
water loss throughout the season resulting from increased canopy cover, it is further theorized
that the elapsed time and therefore the cumulative ETc after an irrigation event at which this
relationship commences will change throughout the season. Determination of such a relationship
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and accounting for seasonal variation could enable SMT to be predicted and used to schedule
irrigation, without the requirement for multiple costly in-field sensors.

Using data from a commercial aerobic rice experiment in southern Australia with various
soil moisture deficits imposed in the vegetative period,25 this study aims to build and validate a
model to predict SMT during the vegetative stage of rice grown aerobically (under non-ponded
conditions) using measured (i) SMT data, (ii) weather conditions, and (iii) NDVI-based remotely
sensed crop coefficients. Specifically, the study aimed to use commercially available open access
remote sensed data sources to develop and test such a model to showcase the opportunity for rice
growers and industry to implement the model with minimal barriers to adoption. However, the
environmental and site-specific nature of such thresholds may limit its applicability across differ-
ent regions. Nevertheless, such a model offers potential to be incorporated into an automated
gravity surface irrigation system, providing remote irrigation control. This has the potential
to provide confidence and assist farmers in adopting a water saving rice culture.

2 Materials and Methods

2.1 Site Description
The study was conducted during two rice-growing seasons (2020/2021 and 2021/2022) on a
commercial property in the Murrumbidgee Valley near Griffith in South-Eastern Australia
(34°17′18″ S, 146°03′03″ E). The soil is a typical rice growing soil in the region, classified
as a self-mulching clay with a 30 cm brown A horizon over a dense red B horizon.37 The
0 to 15 cm soil consists of 34% sand, 9% silt, and 56% clay, as reported in Ref. 25. The climate
is characterized as temperate, with hot dry summers and low humidity. Mean annual rainfall is
385 mm for Griffith with a typical in-season rainfall of 150 mm and evapotranspiration of
1150 mm.38 The monthly rainfall and mean daily ET0 (mm) for the two growing seasons when
the study was conducted are presented in Fig. 1.

The field, which is shown in Fig. 2, was a 9-bay/replicate, down the grade border-check
layout (34 ha) with replicates 500 to 600 m in length and 50 to 75 m wide (∼3.5 ha each).
Earthen banks 30 cm high were used to separate replicates. Irrigation water was supplied at the
top of the replicate using lay-flat rubber stops controlled using portable automated self-powered
AutowichPro’s (Padman Automation, Strathmerton, VIC, Australia). The timing of the first
two-three irrigation events was based on agronomic and herbicide requirements to guarantee
good rice establishment prior to the installation of soil moisture sensors for monitoring and
irrigation decisions. Subsequently, various irrigation deficits were investigated during the
remainder of the vegetative period until panicle initiation. Irrigation and agronomic information
are detailed in Ref. 25. In brief, short-season semi-dwarf c.v. Viand was sown at a rate of 130 and
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Fig. 1 Monthly rainfall (mm) represented by vertical bars on the left axis and daily average ET0

(mm) represented as dots on the right axis during the cropping seasons of 2020–2021 (year 1; red)
and 2021–2022 (year 2; blue) at Griffith, NSW.
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120 kg∕ha into wheat stubble and bare ground in years 1 and 2, respectively. Nitrogen was
applied as granular urea (46% N) at a rate of 220 kgN∕ha in a three-way split. SMT was mea-
sured using two watermark sensors (Model 200SS, Irrometer Company inc., Riverside,
California, United States) to average results per replicate. Sensors were installed beside plants
after establishment to ensure rootzone SMTwas measured at a depth of 15 cm below ground. In
year 1, sensors were connected to WiField loggers that offer low cost, low power data collection,
storage, and transmission to the Google Cloud Platform in real time using an on-farm Wi-Fi
network.39 In the second year, solar powered LoRaWAN IoT communication stations
(SensorPro’s, Padman Automation, Strathmerton, VIC, Australia) were used to collect and send
soil moisture data to the Padman Automation platform for real-time monitoring. SMT data pre-
sented in this manuscript are from four replicates in year 1 and five replicates in year 2 in which
treatments aimed not to surpass either −15 kPa or −40 kpa during the vegetative period from
establishment until panicle initiation as such an irrigation regime was reported by Ref. 25 to
achieve sound water productivity without detrimentally delaying crop development.

2.2 Crop Evapotranspiration Estimation
Crop evapotranspiration (ETc) was estimated using the FAO56 method,32 with water require-
ments calculated as the product of reference evapotranspiration (ET0) and a crop coefficient
as detailed previously in Eq. (1). Hourly reference evapotranspiration and rainfall were calculated
from nearby weather stations using the standardized American Society of Civil Engineers
equation. 40 Hourly data were used due to the effect that the time of day of irrigation may have
in regard to ET0. Crop coefficients were derived using IrriSAT

30 (temporal (∼8 days) and spatial
(10 × 10 m) resolution), which use Eq. (2) to estimate the actual crop coefficient from satellite
multispectral images as33

EQ-TARGET;temp:intralink-;e002;114;165kc ¼ 1.37 × NDVI − 0.086: (2)

Canopy cover was hypothesized to influence the period after an irrigation event at which soil
transitioned from a saturated to a non-saturated state. Remote sensed images to measure canopy
cover were obtained from cloud-free Sentinel-2 satellite images every 3-4 days with a pixel
resolution of 10 m and top of atmosphere reflectance during both growing seasons. The
GeoTIFF images of the whole field site were processed in QGIS (Version 3.10), where polygons
of 900 m2 were created at the site of the soil moisture loggers. The zonal statistics tool available in

Fig. 2 Location of the commercial field site where the 2-year study was conducted with NDVI from
06/01/2021 (year 1).
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QGIS was used to obtain the mean and standard deviation data for each band at each polygon and
used to compute NDVI41 using Eq. (3), where R represents reflectance at the specific wavelength

EQ-TARGET;temp:intralink-;e003;117;712NDVI ¼ R760 − R670

R760 þ R670

¼ Band8 − Band4

Band8þ Band4
: (3)

2.3 Model Creation and Validation
The model to estimate SMT (presented later in Sec. 3.2) was created using year 1 data from
four-replicates and validated using data from five independent replicates collected in year 2.
To evaluate the model performance, the coefficient of determination (R2) and root mean squared
error (RMSE) were calculated rather than the percentage error as the percentage can be substan-
tial for SMT near 0 kPa42 but of little relevance. RMSE was calculated as per Eq. (4), where n is
the number of data points, yi is the i’th measurement, and ŷi is the corresponding predicted
measurement:

EQ-TARGET;temp:intralink-;e004;117;567 RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

ðŷi − yiÞ2
n

:

s
(4)

To account for the high number of data points at or near 0 kPa, actual SMT data were segmented
into three categories; 0 to −10 kPa, beyond −10 kPa, and overall, with RMSE calculated for
each category.

3 Results and Discussion

3.1 Soil Moisture Tension and Crop Evapotranspiration
SMT during the vegetative stage in relation to the number of days since the pre-emergent (first)
irrigation of the individual replicates investigated in this study in years 1 and 2 is presented on the
left side of Figs. 3 and 4, respectively. In all cases, SMT returned to 0 kPa after an irrigation event,
indicating that sufficient irrigation water was applied to refill the soil profile at the monitored
depth. The extent of the soil moisture deficit can be seen to vary between replicates and years as a
result of different irrigation thresholds under investigation (detailed in Champness et al.).25 It was
due to the possible influence of climatic variability between seasons that data was segmented by
year with various deficits in a year to understand if a single model approach could be used. The
estimated crop evapotranspiration (with rainfall subtracted) in relation to the number of days
since the pre-emergent irrigation of each replicate in years 1 and 2 is presented on the right side
of Figs. 3 and 4, respectively. ETc was reset to 0 mm at the time of irrigation or when significant
rainfall was recorded.

The relationship between SMT and cumulative ETc since the last irrigation for each indi-
vidual replicate in both years is shown in Fig. 5. When an irrigation event occurred, ETc values
were reset to zero. Therefore, within each graph, each line of declining soil moisture represents
an individual deficit event within that replicate. For this reason, for certain points on the x-axis
(ETc) there are multiple points on the y-axis (STM). The slope of the individual lines in Fig. 5
represents the relationship between SMT and ETc.

The point of inflexion on the x-axis in Fig. 5, known hereafter as “c,” represents the
cumulative ETc when SMT began to decline (< − 1 kPa). The value of c was not consistent
between replicates or within replicates (Fig. 5). However, c generally increased within each
respective replicate throughout the season. This can be seen in Fig. 6, demonstrating that the
time taken for soil to transition from saturated to non-saturated conditions increased through-
out the season. This is explained by relatively high soil evaporation rates experienced when
little canopy cover exists and is exacerbated with readily available water at the surface
immediately after an irrigation or rainfall event.32 The rate of soil drying decreases over time
as the vapor pressure at the soil surface nears that of the atmospheric vapor pressure.43 As
canopy cover increases throughout the season, an increasing proportion of soil moisture loss is
attributed to transpiration and the rate of loss from evaporation decreases, however, not
proportionally.32 Therefore, increasing canopy cover reduces the initial rate of soil moisture
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loss when compared with relatively bare soil, thus increasing the value of c as the rice
continues to develop canopy closure.

3.2 Developing Model to Forecast Soil Moisture Tension
To determine the average relationship between SMT and ETc across all replicates in year 1, the
x-axis of each deficit period for each replicate was translated c units horizontally to create an
inflexion at zero [Fig. 7(a)]. In general, the gradient of the individual irrigation events in different
replicates is somewhat similar, with an R2 ¼ 0.71. This demonstrates a relatively consistent soil
moisture decline in relation to ETc throughout the period under investigation. This relationship
would likely differ in different soil types or under a more severe irrigation regime as the rate of

Fig. 3 Left: SMT (kPa) and right: ETc with rainfall subtracted (mm), in relation to number of days
since pre-emergent irrigation with letters (a)–(d) used to distinguish individual replicate data from
year 1. Note: IoT loggers to monitor SMT were not installed until establishment; hence data in the
establishment phase is not presented, with logger issues in replicate “A” limiting the period that
data was collected.
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Fig. 4 Left: SMT (kPa) and right: ETc with rainfall subtracted (mm), in relation to number of days
since pre-emergent irrigation with letters (a)–(e) used to distinguish individual replicate data from
year 2. Note: IoT loggers to monitor SMT were not installed until establishment; hence data in the
establishment phase is not presented.
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soil evaporation is highest in wet soils and decreases with declining moisture availability.43 The
gradient of the linear relationship (m) between SMTand cumulative ETc of −1.0 implies that, for
every mm increase in ETc beyond c, SMT declined 1.0 kPa. However, to build a predictive
model, determination of the cumulative ETc when m can be applied (point c) is required.

Fig. 5 (a)–(e) Relationship between SMT (kPa) and cumulative ETc with rainfall subtracted (mm)
since last irrigation for each replicate. Data from year 1 is presented on the left, and year 2 is on the
right.
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Due to increasing canopy cover slowing the rate of soil evaporation and increasing the time
taken for soil to transition from saturated to non-saturated (when soil evaporation is the major
influence of soil water decline),32,43 NDVI was used as a proxy measure to account for the change
in canopy cover experienced throughout the season. As hypothesized, c was found to be corre-
lated to NDVI values [R2 ¼ 0.59, Fig. 7(b)].

Using the relationship between ETc and SMT [m, Fig. 7(a)], and the point at which SMT
declines [c, Fig. 7(b)], a model to predict SMTwas obtained by adding the point of inflection to
the product of m and cumulative ETc since last irrigation (with rainfall subtracted) according to
the following equation:

EQ-TARGET;temp:intralink-;e005;117;192Soil moisture tension ðkPaÞ ¼ m × ETc ðmmÞ þ c; if SMT > 0;¼ 0; (5)

where m is a constant (determined in this soil type under mild to moderate soil moisture deficit
during the post-establishment to PI period to equal −1.0) and c represents the period after
irrigation at which soil moisture begins to decline according to the equation

EQ-TARGET;temp:intralink-;e006;117;133c ¼ 19 × NDVIþ 6: (6)

3.3 Assessment of Model to Predict Soil Moisture Tension
To assess the robustness of the model across seasons, remote sensed ETc and NDVI data col-
lected from individual replicates in year 2 was used to predict SMT according to Eq. (5) and

Fig. 7 a) Translated graph of SMT (kPa) and ETc with rainfall subtracted (mm) from point c
(kPa < −1). Each line represents a deficit period that has been translated c units horizontally with
data from all replicates included from year 1. (b) “c” versus NDVI in year 1, demonstrating the rela-
tionship between canopy cover and the cumulative ETc at which soil moisture begins to decline.

Fig. 6 Example of the relationship between SMT and cumulative ETc (mm) since last irrigation
with different colors used to show how the point of inflection (c) increases throughout the season.
(blue = 55, green = 65, and red = 84 days after pre-emergent irrigation).
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compared with the measured values presented in Fig. 4. The accuracy of the predicted SMT for
the five individual replicates and all data combined is provided in Fig. 8.

The model developed from data collected in year 1 to predict SMTof five replicates in year 2
achieved an R2 ranging from 0.40 to 0.88 with the combined data achieving 0.70 [Fig. 8(f)]. Of
greater importance is the RMSE, which ranged from �3.5 to �7.0 kPa in the individual
replicates with the combined RMSE �5.8 kPa (Table 1). The reduced accuracy of the model
in replicate C is potentially due to soil and therefore crop variability within the area immediately
surrounding the SMT sensor. In this area only, a water reservoir previously existed prior to recent
filling with coarser textured soil. The model can be seen to underestimate the extent of soil
moisture deficit, with the increased frequency of soil moisture deficit events likely a result
of the lower water holding capacity in this particular area. This highlights the limitation of the
model to be used in other soil types. Although the area was not ideal for SMT sensor placement,
this location was selected as the same IoT logger was used to monitor water progress down the
replicate during an irrigation event and was required in this location to ensure full irrigation of the
replicate while minimizing excessive run-off. This highlights the limitation of point-based sens-
ing as it may not have adequately represented the 900 m2 area in which the spectral indices were
calculated.

The combined RMSE of �5.8 kPa is considered sufficient for scheduling irrigation in a
commercial environment. However, it must be highlighted that after an irrigation event, SMT

Fig. 8 Actual versus predicted SMT in year 2 of five individual replicates (a)–(e) and all data
combined from the five replicates presented in panel (f) with a 1:1 line included for perspective.
The model was developed from data collected in year 1.

Table 1 Individual replicate (A–E) and all data combined (F) R2 and RMSE values 0 to −10 kPa,
< − 10 kPa and overall, for forecast SMT in year 2 using the model built from year 1 data.

A B C D E Combined

R2 0.88 0.54 0.40 0.88 0.79 0.70

RMSE >−10 kPa 2.4 3.5 3.1 2.3 1.6 2.8

<−10 kPa 11.2 4.8 12.2 11.9 6.9 10.7

Overall 6.7 3.5 7.0 6.9 4.1 5.8
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returned to 0 kPa and remained at or close to that value for some time. Therefore, many
measured data points were 0 kPa (58%), with 76% of data points occurring under saturated
conditions (0 to −10 kPa). Accuracy beyond −10 kPa is of greater importance for irrigators as
this is when irrigation decisions are required. RMSE calculated separately for 0 to −10 kPa

and beyond −10 kPa is provided in Table 1. From 0 to −10 kPa, the RMSE was �2.8 kPa

and �10.7 kPa for SMT beyond −10 kPa when all replicate data were combined.

3.4 Evaluation and Limitations of the Model
The model is shown in Fig. 8 to under-estimate SMT in year 2, indicating that the rate of soil
moisture decline in year 2 was greater than in year 1. A comparison between year 1 and year 2 on
the rate of soil moisture decline in relation to ETc is shown in Fig. 9, where the gradient, m, in
year 1 was −1, but in year 2 it was found to be −1.4. For every mm increase in ETc beyond c,
SMT declined 1.4 kPa in year 2, as opposed to 1.0 kPa in year 1.

The different rate of SMT decline is likely a result of the residual stubble from the winter
cereal grown prior to rice in year 1 acting as a mulching layer to slow the exchange of water
between the soil and atmosphere by buffering the soil surface temperature, reducing the heat flux,
and therefore reducing soil evaporation losses in year 1.32 Rice stubble was burned prior to seed-
ing in year 2, a practice known to increase soil evaporation.44 This highlights the impact of man-
agement practices on soil moisture and therefore a limitation of the model for widespread
adoption.

Furthermore, decreasing the frequency of irrigation (extending the SMT beyond the
−40 kPa reported here) would likely further increase the rate of decline in SMT compared with
ETc due to increased resistance of moisture movement associated with declining soil water.32,43

However, increasing soil moisture deficit beyond the values analyzed in the current study was
found to have adverse yield implications and is not recommended in a temperate Australian
environment, as reported in Ref. 25. Nevertheless, the model proved to estimate SMT within
an overall RMSE of �5.8 kPa and is considered appropriate to schedule irrigation in this envi-
ronment. Short term (7-day) ET0 forecasts are considered reasonably accurate in the region,
providing opportunity for future research to incorporate forecast ET0 into the model to predict
SMT multiple days in advance. This would enable forward scheduling of irrigation, which is
required when irrigation water is not available on demand and water ordering requires a lead
time. Such forecasting has been demonstrated for use in cotton production by Refs. 36 and 45
and offers potential to be incorporated into an automated irrigation system for water saving rice
production. Although generally not an issue in semi-arid regions, cloud cover may limit the
accuracy of predictions, with increased frequency of imagery preferable. This may be possible
with the incorporation of other satellite-based sensing alternatives; however, the fusion

Fig. 9 Translated graph of SMT (kPa) and ETc with rainfall subtracted (mm) from the time
kPa < −1. Each line represents a deficit period that has been translated c units horizontally with
data from all replicates included from year 1 in red and year 2 in blue.
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of spectral indices may be required to ensure that properly calibrated NDVI values can be
achieved.

4 Conclusion
This manuscript presents the relationship between SMT and cumulative crop evapotranspiration
(with rainfall subtracted) as calculated using remote sensed satellite data for non-ponded aerobic
rice grown in heavy clay soil in temperate Australia. Using remote sensed data collected from a
commercial rice field, a model was developed to predict SMT of an independent dataset with an
RMSE of �5.8 kPa. This offers the potential for irrigators to schedule irrigation using open
access, free data, without the need for costly in-field sensors. Further benefit to rice farmers
may be gained from future research to incorporate short-term forecast crop evapotranspiration
and therefore SMT, providing irrigators more time to plan irrigation activities.

Code, Data, and Materials Availability
The data presented in this study are available on request from the corresponding author.
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