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Abstract

Significance: Performance during risky decision making is one of the essential cognitive func-
tions that is impaired in several psychiatric disorders including addiction. However, the cognitive
mechanism and neural correlates underlying risky decision making in chronic pain patients are
unclear. To our knowledge, this study is among the first to construct computational models to
detect the underlying cognitive process of chronic pain patients during risky decision making.

Aim: This study aimed at inspecting the significantly abnormal risky decision-making patterns
of chronic pain patients and its neuro-cognitive correlates.

Approach: In this case-control study, 19 chronic pain patients and 32 healthy controls (HCs)
were included to measure the risky decision making in a balloon analogue risk task (BART).
Optical neuroimaging using functional near-infrared spectroscopy, together with computational
modeling, was carried out to systematically characterize the specific impairments based on
BART.

Results: Computational modeling findings on behavioral performance demonstrated that the
chronic pain patient group exhibited significant deficits in learning during BART (p < 0.001),
tending to make decisions more randomly without deliberation (p < 0.01). In addition, significant
brain deactivation alternation in the prefrontal cortex (PFC) during the task was detected for the
patient group compared with that from the control group (p < 0.005).

Conclusions: Long-term aberrant pain responses significantly disrupted the PFC function and
behavioral performance in chronic pain patients. The joint behavioral modeling and neuroimag-
ing techniques open a new avenue for fully understanding the cognitive impairment and brain
dysfunction of risky decision making associated with chronic pain.
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1 Introduction

Pain affects over 50 million people in the United States, with ∼30.7% of US adults suffering
from chronic pain.1 In particular, chronic pain has become a common yet complex and chal-
lenging issue around the world, threatening public health and increasing the economic burdens
of governments.2 Chronic pain is denoted as the pain lasting for over three months, which is
substantially associated with emotional distress and functional disability.3 More importantly,
chronic musculoskeletal pain, as the most predominant among all chronic pain conditions, rep-
resents
a severe challenge to primary care. In addition, previous studies4 demonstrated that 10.4% to
14.3% of chronic pain patients suffered from moderate to severe disabling pain. Further, patients
with severe and intractable chronic pain might develop psychiatric disorders, such as depression
and anxiety, leading to psychological distress, job loss, or social isolation.5 Therefore, the com-
plicated nature of chronic pain involves an interplay between psychological and physical factors,
causing increased emotional distress and reduced quality of life.6,7

Interestingly, neuroimaging studies have revealed the altered brain activities of afferent and
descending pain pathways (e.g., thalamus, insula, and somatosensory cortex) and the atrophy of
different pain perception regions of the brain after experiencing long-lasting abnormal pain
stimulus. In addition to the brain regions associated with pain pathways, regions of emotional
response, including amygdala and nucleus accumbens, have also been observed to exhibit abnor-
malities in cases of chronic pain, in line with the findings from neuropsychiatric disorders.8

Specifically, those altered brain regions are responsible for corresponding cognitive functions.
Several cognitive deficits have been identified in chronic pain, such as memory decline9 and
attention impairments.10 However, as an integral part of human higher-order cognition, risky
decision making is poorly understood among chronic pain patients. To date, no studies have
been performed to inspect the neural correlates of risky decision making for chronic pain
patients.

Decision making constitutes an integral part of daily life. It involves a complex process
whereby individuals try to fulfill their aims and expectations based on their judgments regarding
rewards and risks under internal and contextual/social constraints.11 Previous studies have illus-
trated that impaired decision making is one of the core features of several neuropsychiatric dis-
orders, such as depression12 and anxiety.13 Additionally, individuals’ performance and potential
neural correlates in decision making are also used for the detection and treatment assessment of
mental disorders.14 Similarly, decision-making behaviors can also be negatively influenced by an
abnormal pain stimulus15,16 in which disrupted decision making was detected as an attempt to
offset the negative experience of pain and acute thermal pain. In addition, the relationship
between risky decision-making performance and pain stimulus was also inspected,17 demonstrat-
ing that the experience of pain or the threat of additional pain might cause changes in risky
decision making and efforts on other cognitive tasks. More importantly, it was discovered that
chronic pain patients exhibited cognitive deficits in attention and working memory, which are
crucial for the behavioral performance of risky decision making.18

In particular, the balloon analogue risk task (BART) has been widely used to measure risk-
taking behaviors. BART is able to illustrate a real-world situation to identify an overall propen-
sity for risk taking rather than a unique likelihood of engaging in a particular type of risky
behavior.19 Meanwhile, BARTwas reported to be the only behavioral instrument that was unaf-
fected by recall bias.20 The adjusted BART scores, defined as the average number of pumping for
unexploded balloons, are used to measure the degree of risk taking.21 However, the adjusted
BART scores are unable to reveal some nuanced information, including learning ability and
loss aversion. To address this issue, computational modeling of cognitive tasks has been widely
used in various clinical patients to overcome the limitations of conventional behavioral tasks.22

Specifically, three models have been proposed to fit the BART behaviors. Initially, Wallsten
et al.23 proposed a four-parameter model to depict the behavior in BART; then van Ravenzwaaij,
Dutilh, and Wagenmakers24 proposed a two-parameter model by removing two parameters from
the four-parameter model, which showed a better fit. Recently, Park et al.25 proposed a new
computational model by utilizing the prospect theory, which showed significantly improved per-
formance over the previous work. Until now, no studies have systematically examined the

Zeng et al.: Behavioral modeling and neuroimaging of impaired risky decision making in patients. . .

Neurophotonics 020901-2 Apr–Jun 2023 • Vol. 10(2)



specific cognitive impairments of chronic pain patients relevant to BART. It is therefore impor-
tant to quantitatively depict the underlying cognitive process of BART by constructing computa-
tional models to inspect the specific deficiency in chronic pain patients. Yet, the two-parameter
approach has a major limitation, assuming that participants do not learn during BART,24 which
mitigates the explanatory power of modeling. Thus, considering the learning process of BART,
we used the other two models to recover the performance of BART,23,25 which provided viable
tools for estimating the specific deficit in risky decision making among the chronic pain pop-
ulation in the current study.

In addition, to investigate the neural correlates of risky decision making among chronic pain
patients, functional near-infrared spectroscopy (fNIRS) neuroimaging was carried out. As a non-
invasive optical neuroimaging technique, fNIRS measures the concentration changes of oxygen-
ated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in brain tissue in response to
neuronal activation. This technique has several distinctive advantages, including compatibility
with other devices, low cost, robustness against motion artifacts, higher temporal resolution
compared with functional magnetic resonance images, and higher spatial resolution compared
with EEG.26 Drawing on fNIRS technique, previous studies demonstrated the altered structure
and functions of prefrontal cortex (PFC) for chronic pain patients. For instance, Donadel et al.27

demonstrated distinct activation patterns at PFC elicited by pain stimulus between chronic pain
patients and HCs using fNIRS. Meanwhile, after effective intervention for chronic pain patients,
significantly reduced activations in PFC were detected during pain stimulus.28 Furthermore,
abnormal PFC activity was also identified during reward processing29 and attention tasks30

in chronic pain. In light of this existing evidence, it is hypothesized that chronic pain patients
would manifest different brain activation patterns in PFC than that of the HCs, as revealed by
fNIRS data.

Therefore, this study aims to inspect the cognitive impairment associated with risky decision-
making in patients with chronic musculoskeletal pain. It is hypothesized that risky decision mak-
ing was significantly impaired in chronic musculoskeletal pain patients compared with that from
the HCs. To test the hypothesis, concurrent behavioral modeling and fNIRS neuroimaging were
performed to inspect the specific impairments and potential neural mechanisms during BART. In
particular, using the computational model, nuanced cognitive processes during BARTwould be
revealed, which could further relate to the abnormalities that contribute to the aberrant BART
performance. Meanwhile, fNIRS recordings can capture the significant difference in brain acti-
vation between chronic pain patients and HCs. It is expected that this study might provide new
insights into the cognitive neural mechanism associated with risky decision making in chronic
musculoskeletal pain.

2 Methods

2.1 Participants

Nineteen chronic musculoskeletal pain patients (25.3� 4.6 years, 12 females, Table 1) who
reported chronic pain lasting over 6 months, with visual analog scale (VAS) ratings of less than
7, participated in this study. All patients were diagnosed with chronic musculoskeletal pain and
received non-medication treatment at the First Affiliated Hospital of Sun Yat-sen University
(Guangdong, China). Thirty-two age- and gender-matched adults (24.7� 4.2 years, 18 females)
were recruited as the HCs. Both patients and HCs were right-handed and reported no history of
neurological or psychiatric disorders (including depression and anxiety) or insomnia. Informed
consent forms were obtained from all participants before the experiment. The protocol and all
procedures of this study were approved by the Institutional Review Board from Sun Yat-sen
University and the University of Macau.

2.2 Paradigm and Procedures

BART is composed of pumping, feedback, and recovery periods. At the beginning of the
pumping period (Fig. 1), a virtual balloon with one of the three colors (blue, green, and red)
was presented in the center of the screen, and participants were instructed to decide whether to
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pump the balloon to continually enlarge the predescribed rewards or alternatively to terminate
this trial to receive the rewards that have been received on this trial by pressing the correspond-
ing buttons. The pumping period would be ended immediately either by the participants’
choice to stop, winning the collected rewards, or when the balloon exploded itself and par-
ticipants lost all of the collected rewards on the trial. In addition, the different colors of
the balloon were associated with differing maximum pumping times: 8 pumping times for

Fig. 1 Schematic of the modified BART. The trial of BART consisted of the pumping period, feed-
back period (sound of the results, 0.5 s), and recovery period (a fixation cross lasting for 1 to 2 s).

Table 1 Demographic and chronic pain characteristics of the patient group.

Participant
number Gender Age Pain condition Pain duration

1 Male 27 Chronic neck pain More than 6 months

2 Male 21 Chronic neck pain with hands numbness More than 1 year

3 Female 26 Dizziness with soreness of neck muscles More than 6 months

4 Female 30 Suboccipital muscles pain More than 1 year

5 Female 22 Neck pain More than 2 years

6 Male 20 Neck pain with dizziness More than 1 year

7 Female 28 Left shoulder pain More than 9 months

8 Male 28 Hip pain More than 1 year

9 Female 24 Knee pain More than 1 year

10 Female 31 Neck pain More than 6 months

11 Female 28 Shoulder pain More than 2 years

12 Female 27 Shoulder pain More than 4 years

13 Male 26 Neck pain More than 6 months

14 Female 29 Knee osteoarthritis More than 1 year

15 Male 28 Shoulder pain More than 1 year

16 Female 19 Left shoulder pain More than 6 months

17 Male 20 Low back pain More than 1 year

18 Female 32 Recurrent myofascial pain More than 1 year

19 Female 15 Left knee pain More than 6 months
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the blue balloons, 32 for the green, and 128 for the red. Meanwhile, the time point of pumping
explosion for each trial was randomly determined. Therefore, participants were able to perform
the experiment with different sets of explosion probability, such that they were unaware of the
probability of balloon explosion. Feedback comes with the sound of a balloon pop or cash out,
and the recovery period lasts for 1 to 2 s with a fixation cross displayed in the center of
the monitor.

Participants were seated in a quiet and dark room, and both behavioral data and fNIRS sig-
nals were recorded simultaneously during BART. Before the experiment started, the participants
were required to obtain as much reward as possible from the task, which was associated with
their monetary reward at the end. After an 8-trial practice session, participants would perform
the formal test consisting of 90 trials of 3 conditions (i.e., 3 different balloon colors). It took
8 to 12 min to finish the tests, and the reward was offered to each participant based on his or
her performance in the task.

2.3 Computational Modeling

As mentioned earlier, two computational models were chosen based on existing studies,23,25

which showed an instinctive interpretation of the learning process. Both computational models
used the number of pumps and the outcome of pumps (explosion or not) in BART.

2.3.1 Re-parameterized four-parameter model

The re-parameterized four-parameter model (RFPM) was based on two crucial assumptions:
(i) participants need to renew their belief about the balloon’s explosion probability after each
trial and (ii) participants can determine the optimal number of pumps before each trial.
According to previous reports,23 the behavioral patterns of BART were determined by four
factors: prior belief of the balloon not bursting (ϕ), learning rates based on the results of each
trial (η), risk-taking propensity (γ), and inverse temperature (τ) quantifying the degree of deter-
mination of choices.

Based on the first assumption, pburst
k is a constant probability that participants believe a pump-

ing would result in the balloon explosion in trial k. Then participants update prior beliefs after
the feedback on each trial, which is denoted as

EQ-TARGET;temp:intralink-;e001;116;350pburst
k ¼ 1 −

ϕþ η
P

k−1
i¼0 n

success
i

1þ η
P

k−1
i¼0 n

pumps
i

with 0 < ϕ < 1; η > 0; (1)

in which η
P

k−1
i¼0 n

success
i refers to the sum of successful pumps up to trial k − 1 and η

P
k−1
i¼0 n

pumps
i

denotes the sum of all pumps until trial k − 1.
As for the other assumption, participants have to determine the optimal pump number (vk)

prior to each trial, without adjustment during BART. Therefore, the likelihood that participants
can pump balloon on trial k for pump l, ppump

kl is written as

EQ-TARGET;temp:intralink-;e002;116;242vk ¼
−γ

lnð1 − pburst
k Þ with γ ≥ 0; (2)

EQ-TARGET;temp:intralink-;e003;116;188ppump
kl ¼ 1

1þ eτðl−vkÞ
with τ ≥ 0: (3)

The likelihood of the data pðDjα; μ; τ; γÞ depends on the probability that participants can
pump on trial k for pump l, ppump

kl . The probability of the abovementioned parameters is
basically the product of all probabilities with one minus the probability of cash out condi-
tions.

EQ-TARGET;temp:intralink-;e004;116;117pðDjα; μ; τ; γÞ ¼
Yklast
k¼1

Yllastk

l¼1

ppump
kl ð1 − ppump

k;lastk þ1
Þdk : (4)
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2.3.2 Exponential-weight mean-variance model

Park et al.25 proposed the exponential-weight mean-variance model (EWMVM) to precisely
depict the performance of BART, considering some crucial attributes of risk taking, including
loss aversion and impulsive responses. Five factors were adopted to clearly describe the behav-
ioral patterns of BART: prior belief of the balloon not bursting (ϕ), learning rates based on the
results of each trial (η), risk-taking propensity (γ), inverse temperature (τ), and loss aversion (λ).

In particular, a weight was proposed for prior belief (ϕ), which is determined by the learning
rate (η). Therefore, Eq. (1) is rewritten as

EQ-TARGET;temp:intralink-;e005;116;633

pburst
k ¼ 1

1þ η
P

k−1
i¼0 n

pumps
i

� ð1− ϕÞ þ
�
1−

1

1þ η
P

k−1
i¼0 n

pumps
i

�
�Pk−1 with 0 < ϕ < 1; η > 0;

(5)

in which Pk−1 denotes the observed probability in trial k − 1 and 1

1þη
P

k−1
i¼0

npumps

i

measures the

weight for prior belief (ϕ).
In addition, Park et al.25 applied mean-variance analysis to appraise subjective utilities

(Upump
kl ) for balloon pump on trial k for pump l, which is calculated as

EQ-TARGET;temp:intralink-;e006;116;516Upump
kl ¼ ð1−pburst

k Þr− ð1−pburst
k Þλðl− 1Þrþ γpburst

k ð1−pburst
k Þfrþ λðl− 1Þrg2 with λ> 0;

(6)

in which r represents the number of coins for each successful pump and p
pump
kl is calculated by

subjective utilities (Upump
kl ) as

EQ-TARGET;temp:intralink-;e007;116;446ppump
kl ¼ 1

1þ eτð0−U
pump

kl Þ with τ ≥ 0: (7)

Similarly, in pðDjα; μ; τ; γ; λÞ, the five parameters are estimated using the same method
as Eq. (4).

2.3.3 Parameter estimation

Parameters of the two models were accessed using hierarchical Bayesian analysis,31 which
allows for calculating the individual and group data simultaneously in a mutually constraining
fashion. Hierarchical Bayesian analysis was available in the Stan software package32 and
hBayesDM package33 in R34 using Hamiltonian Monte Carlo. A large sample size of 4000 was
used to ensure that the parameters were able to be converged to the goal distributions, and four
independent chains were adopted to inspect whether the posterior distributions were independent
of the initial starting points.

2.3.4 Model comparison

The performances of the two models were compared and justified using leave-one-out informa-
tion criterion (LOOIC).35 LOOIC was calculated from the leave-one-out cross-validation,
estimating out-of-sample prediction accuracy based on the log-likelihood captured from the
posterior distributions. A low LOOIC score represents a superior model performance. LOOIC
weight is defined by Akaike weights36 based on LOOIC values as

EQ-TARGET;temp:intralink-;e008;116;159wiðLOOICÞ ¼
exp

n
− 1

2
ΔiðLOOICi − LOOICminÞ

o
P

N
n¼1 exp

n
− 1

2
ΔnðLOOICi − LOOICminÞ

o : (8)
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2.4 fNIRS Data Acquisition and Preprocessing

The Artinis device (Oxymon Mk III, The Netherlands) was utilized to measure the HbO and
HbR changes in PFC with a sampling rate of 50 Hz at two wavelengths of 760 and 850 nm.
Specifically, two near-infrared light sources and eight detectors with an inter-optode distance of
three cm yielded eight fNIRS channels. In addition, the Montreal Neurological Institute (MNI)
coordinates37 of each fNIRS channel were quantified using the ICBM-152 head model, which
were then processed by NIRS-SPM for spatial registration to estimate the anatomical labels and
the overlapping percentage of covered brain regions (Table 2, Fig. 2).

fNIRS data were preprocessed using NIRS-KIT,38 implemented in MATLAB. Recordings
from the first and last 15 s were removed from each participant’s raw data to ensure that the
participant could keep a steady state. Then, the detrend39 and temporal derivative distribution
repair methods40 were adopted to reduce the data drift and correct artificial motions, respectively.
To reduce the potential physiological noise and pursue a satisfactory signal-to-noise ratio, the
data were further filtered with a bandpass of 0.01 to 0.1 Hz.41

To estimate the brain activation in the PFC during the risky decision-making task, a general
linear model (GLM) at the individual level was utilized.39 For the GLMmodel, the task condition
for risky decision making was convolved with a standard canonical hemodynamic response
function to form the corresponding regressor, and the resting data (45 s) were included as the

Table 2 3D MNI coordinates, anatomical labels, and coverage percentage of fNIRS channels.

Channel
number

MNI

Brodmann Area -
anatomical label

Percentage
of overlapX Y Z

1 51 46.33 16.33 45 - Pars triangularis Broca’s area 0.60517

46 - Dorsolateral PFC 0.39483

2 31.67 65 17 10 - Frontopolar area 0.80989

46 - Dorsolateral PFC 0.19011

3 50.33 51.67 −1.33 45 - Pars triangularis Broca’s area 0.029197

46 - Dorsolateral PFC 0.9635

47 - Inferior prefrontal gyrus 0.0072993

4 30.67 68.33 −1.67 10 - Frontopolar area 0.36093

11 - Orbitofrontal area 0.63907

5 −25.67 66.67 17.67 10 - Frontopolar area 0.86716

46 - Dorsolateral PFC 0.13284

6 −46 49.33 17.33 45 - Pars triangularis Broca’s area 0.41985

46 - Dorsolateral PFC 0.58015

7 −27.67 67.33 0.67 10 - Frontopolar area 0.51495

11 - Orbitofrontal area 0.48505

8 −47.67 51.67 −0.67 10 - Frontopolar area 0.022642

45 - Pars triangularis Broca’s area 0.037736

46 - Dorsolateral PFC 0.93962
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implicit baseline. Then, the individual activation of decision making (β: beta value) for each
measurement channel was generated and contrasted with the baseline PFC activity. Although
the HbO signals are more sensitive to detecting the regional cerebral blood flow changes in
cognitive tasks, only HbO signals were included for further analysis.42,43

2.5 Statistical Analysis

In accordance with a case-control study protocol, the current statistical analyses were done in R
software 3.6 and MATLAB 2016. First, a two-way ANOVA revealed that the BART scores were
significantly different (Fð2;49Þ ¼ 47.821, p < 2 × 10−16) among the three balloons, whereas no
significant difference of BART scores across the three conditions between chronic pain patients
and HCs (Fð2;49Þ ¼ 1.013, p ¼ 0.316) and interaction effects were found (Fð3;48Þ ¼ 1.05,
p ¼ 0.726). Given that the difference between three conditions was huge regarding maximum
pumping times and the BART scores, the adjusted BART scores were compared by independent
sample t-tests (two-tailed) across the three conditions, respectively. Then, the two models were
compared by LOOIC to select the better fit. Model parameters, including prior belief of the
balloon not bursting (ϕ), learning rates based on the results in each trial (η), risk-taking propen-
sity (γ), inverse temperature (τ), and loss aversion (λ), were measured by independent sample
t-tests (two-tailed) to explore the difference between the chronic pain patients and HCs. For those
analyses, the significance level was set at 0.05, and p-values of fNIRS results were corrected
using the false discovery rate (FDR). Due to the preliminary nature of the work, no a priori
power analysis was conducted.

Fig. 2 Artinis device and channel position. (a) The Artinis device, composed of two near-infrared
light source emitters and eight detectors; (b) the device setup; (c) fNIRS channels reconstructed by
NIRS-SPM; and (d) fNIRS topomaps.
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3 Results

3.1 Performance of BART

The chronic pain patient group exhibited significantly lower adjusted BART scores
(7.89� 3.00) when pumping the green balloons (intermediate explosion threshold condition)
compared with the HCs (10.35� 4.56), tð2;49Þ ¼ −2.30, and p ¼ 0.026 [Fig. 3(b)]. In addition,
for the other two conditions, the patient group showed no significant difference in adjusted
BART scores. For the high explosion threshold condition (red balloons), the patient group
showed slightly more conservative potentials (18.79� 14.80) than the HCs (20.98� 14.24),
tð2;49Þ ¼ −0.51, and p ¼ 0.609 [Fig. 3(c)]. However, this is not the case for the low explosion
threshold condition (blue balloons), in which the patient group demonstrated a bit riskier
potential (3.27� 0.76) than the HCs (3.09� 1.45), tð2;49Þ ¼ 0.53, and p ¼ 0.604 [Fig. 3(a)].

3.2 Computational Modeling

3.2.1 Model comparison

Results from the RFPM and EWMVM models were compared using corresponding LOOIC
weights that denote the relative likelihood defined by LOOIC values for selecting an optimal
model. A low LOOIC value specifies a more fit model. Comparison results (Table 3) illustrated
that EWMVM is a better fit for our results according to its LOOIC weights of 1.

Table 3 LOOIC results of the two models in the two groups.

Group Model LOOIC value LOOIC weight

HC EWMVM 3251.459 1.000

RFPM 3298.085 0.000

Chronic pain EWMVM 2137.184 1.000

RFPM 2224.345 0.000

EWMVM, exponential-weight mean-variance model; RFPM, re-parameterized
four-parameter model.

Fig. 3 Adjusted BART scores across the three conditions. (a) Adjusted score for the blue balloon
condition (low explosion threshold), (b) adjusted score for the green balloon condition (intermedi-
ate explosion threshold), and (c) adjusted score for the red balloon condition (high explosion
threshold). * indicates p < 0.05.
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3.2.2 Model parameters

The posterior distributions of the fitted model (EWMVM) parameters were calculated to quantify
describe the underlying cognitive process when the two groups carried out BART (Fig. 4). It was
found that the chronic pain patients exhibited significantly decreased learning rates with
η ¼ 0.0016, compared with HCs with η ¼ 0.049 (tð2;49Þ ¼ −3.67; p ¼ 0.0008). Meanwhile,
the chronic pain patients showed significantly lower τ values (τ ¼ 5.32) than HCs (τ ¼ 6.94)
(tð2;49Þ ¼ −2.78, p ¼ 0.007), indicating a low deterministic process when making risky deci-
sions. By contrast, no significant difference was detected between the two groups in prior belief of
the balloon not bursting (ϕpain ¼ 0.044, ϕHC ¼ 0.037, tð2;49Þ ¼ 0.5584, and p ¼ 0.5822),
risk-taking propensity (γpain ¼ −0.010, γHC ¼ 0.004, tð2;49Þ ¼ 1.910, and p ¼ 0.071), and loss
aversion (λpain ¼ 2.32, λHC ¼ 2.807, tð2;49Þ ¼ −0.987, and p ¼ 0.3283). Interestingly, the
low performances of BART and model parameters (learning rate η and inverse temperature τ)
concurrently demonstrated the deficit in risky decision-making abilities among chronic pain
patients.

3.3 fNIRS Neuroimaging Results

To verify the corresponding neural response of BART, the brain activation regions in the PFC
were identified by fNIRS neuroimaging. The pairwise t-test was performed, demonstrating that
significantly lower activation with pFDR < 0.05 was detected for the chronic pain patient group,
compared with HCs in channel 4 ðtð2;49Þ ¼ −3.049, puncorrect ¼ 0.0037, 36.09% of the fron-
topolar area and 63.91% of the orbitofrontal area). The t values of HbO signal difference between
the chronic pain patients and HCs were mapped (Fig. 5) by adopting the Xjview toolbox44 and
BrainNet Viewer toolbox.45

Fig. 5 Activation patterns of the PFC in BART. (a) T-maps show the activation difference of the
PFC during BART between the chronic pain group and HC group, (b) the activation patterns of
PFC during BART for the HC group, and (c) the activation patterns of PFC during BART for the
chronic pain group. The color bar denotes the t values.

Fig. 4 Group parameters with EWMVM. Phi is used to describe prior belief of burst, eta displays
the updating exponent, rho denotes risk preference, tau represents inverse temperature, and
lambda represents loss aversion. ** indicates p < 0.01, and *** indicates p < 0.001.
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4 Discussion

Consistent with previous findings,17,46,47 the defective decision-making abilities were identified
for chronic pain patients according to both adjusted BART score and modeling parameters in our
current study. Interestingly, adjusted BART scores were introduced by Lejuez et al.21 to measure
the performance of risky decision making, which is indirectly affected by the explosion prob-
ability. This work also found that, compared with HCs, the patient group showed significantly
decreased activation patterns of risky decision-making behaviors, which might be due to the
chronic pain induced by physical damage or abnormal psychological feelings. In particular, cog-
nitive functions were highly influenced by chronic pain, as cognitive activities might require
resource allocation to subjectively perceive pain.48,49 In addition, previous studies also demon-
strated that the impaired performance of various cognitive processes has been found during acute
pain stimulus30,48,50 or chronic pain stage (suffering from long-lasting aberrant pain stimulus).51–54

In particular, pain perceptions compete with other cognitive functions, thus demanding attention by
the limited cognitive resources.55 For example, Moore et al.56 found that chronic pain patients
showed decreased attention allocation. Meanwhile, memory and storage systems of information,
including working memory57 and recognition memory,58 were revealed to be negatively influenced
by chronic pain. Further, as a complex cognitive process, decision making involves multiple cog-
nitive functions. Therefore, impaired decision-making performance was detected in chronic pain
for this work, highlighting the importance of identifying the core deficit in decision making asso-
ciated with chronic pain.

Importantly, through constructing the computational model, we found that EWMVM25 is a
better model as it took loss aversion of the participants into account. In EWMVM, the perfor-
mance of BART is determined by five factors: prior belief of the balloon not bursting (ϕ), learn-
ing rates based on results of each trial (η), risk-taking propensity (γ), inverse temperature (τ), and
loss aversion (λ). Our findings demonstrated significantly impaired learning abilities (update the
belief after feedback) and more random decision making among chronic pain patients. Learning
from feedback and updating the decision-making strategy to make optimal decisions are
extremely important due to the uncertain characteristics of the outcome in decision making.59

When making decisions, participants need to adjust their decision-making strategy based on the
feedback via two distinctive yet interactive patterns: “cold” cognitive pattern and “hot” emo-
tional response.60 The former is related to the central executive network, anchored in dorsolateral
PFC, which evaluates and optimizes decision-making strategy to the maximal profit.61 Using
BART, Humphreys et al.62 identified that, with the development of brain from childhood to adult-
hood, the learning abilities increase gradually and become less likely to be affected by negative
feedback. By contrast, for the “hot” emotional response,63 emotional and involuntary arouse
occurred in body, demonstrating increased heart rate, visceral reactions, transpiration or relief,
and regret when receiving feedback.64 Interestingly, both acute pain and chronic pain can be the
dominant stressors to evoke the stress response system [the hypothalamic-pituitary-adrenal
(HPA) axis], releasing the stress hormone cortisol. Importantly, those responses are remarkably
similar to the response induced by stressful emotions.65 For example, numerous studies have
illustrated the dysfunction of HPA in chronic pain patients, by abnormally releasing cortisol
and biasing toward negative feedback.66,67 In addition, Mansour et al.68 proposed that pain can
provide a teaching signal that enables individuals to reduce negative feedback in which pain is
a primary punisher to give rise to negative reinforcement. Therefore, our evidence clearly indi-
cated that impaired decision-making performance could be explained by decreased learning abil-
ities from feedback. And it is more likely that chronic pain patients are willing to make decisions
with deliberations, which might be largely influenced by pain feelings.

Further, using fNIRS neuroimaging techniques, we identified decreased cortical activation in
the PFC during risky decision making for the chronic pain patient group, compared with HCs.
The PFC has been recognized to play a vital role in perceiving, modulating, and reappraising
pain through various ascending and descending tracts.69 Due to the long-lasting chronic pain
stimulus, PFC has to allocate more resources to process pain-related information and strengthen
pain-related pathways.70 Those pain-induced alternations would influence other functions of the
PFC, including decision making. Meanwhile, the abnormal functions of PFC have been widely
inspected in chronic pain patients, including working memory task,71 time discounting,72 and
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attention task.73 In particular, previous studies demonstrated significant structural and functional
alterations of PFC. For example, reduced gray matter volume in PFC was detected in chronic
pain patients, including musculoskeletal pain74–77 and other types of chronic pain.78–80 In addi-
tion, the altered structural and functional connectivity of PFC has been revealed for chronic pain
patients. For example, Moayedi et al.81 demonstrated reduced white matter connectivity from the
middle cingulate cortex to PFC, and Čeko et al.,82 Hashmi et al.,83 Hubbard et al.,84 and Li et al.85

detected abnormal functional connectivity of PFC.
The distinctive risky decision-making behaviors and deactivated PFC activity during risky

decision making of chronic pain patients provide an effective index of automatically discerning
the chronic pain patients from HCs and measuring the intervention efficacy. Several machine
learning methods have achieved satisfactory performance in the diagnosis of chronic pain
patients by combining cognitive tasks and neuroimage tools.86,87 Further studies could utilize
artificial intelligence, such as machine learning and deep learning, to combine cognitive and
neuroimaging data for precise diagnosis and treatment of chronic pain patients. However, there
were several limitations in our study which warrant discussion. First, the channels of fNIRS in
the current study were unable to cover the whole PFC, and dorsolateral PFC, frontopolar regions,
and ventromedial PFC might play different roles in risky decision making. Thus, future studies
can make more precise discriminations of those regions and non-PFC brain regions in chronic
pain patients during risky decision making. Second, even though we excluded patients diagnosed
with psychiatry disorders (anxiety, depression, etc.) and patients with extreme pain, our study did
not measure the specific degree of anxiety, depression, pain intensity, and pain interference
among the included sample, which could be taken into consideration by future investigations.

In summary, through constructing computational models to quantitatively depict the under-
lying process of BART, we demonstrated that chronic pain patients have significant deficits in
learning from the BART results and make decisions more randomly without deliberation. In
addition, the deactivated brain activation in PFC was manifested for the chronic pain patient
group, supporting the notion that long-term aberrant pain stimulus might damage the functions
of the PFC. Combined evidence from behavioral and neuroimaging findings suggest that the
altered risky decision-making abilities can provide new insights for discerning pain-related cog-
nition impairment and understanding the cognitive neural mechanism of pain-related circuits,
further achieving better intervention efficacy.
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