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Abstract. Commercial multispectral satellite datasets, such as WorldView-2 and Geoeye-1 images, are often
delivered with a high-spatial resolution panchromatic image (PAN) as well as a corresponding lower resolution
multispectral image (MSI). Certain fine features are only visible on the PAN but are difficult to discern on
the MSI. To fully utilize the high-spatial resolution of the PAN and the rich spectral information from the
MSI, a pan-sharpening process can be carried out. However, difficulties arise in maintaining radiometric
accuracy, particularly for applications other than visual assessment. We propose a fast pan-sharpening proc-
ess based on nearest-neighbor diffusion with the aim to enhance the salient spatial features while preserving
spectral fidelity. Our approach assumes that each pixel spectrum in the pan-sharpened image is a weighted
linear mixture of the spectra of its immediate neighboring superpixels; it treats each spectrum as its smallest
element of operation, which is different from the most existing algorithms that process each band separately.
Our approach is shown to be capable of preserving salient spatial and spectral features. We expect this algo-
rithm to facilitate fine feature extraction from satellite images. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.53.1.013107]
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1 Introduction
Modern space-borne imaging sensors deliver high-spectral
resolution multispectral [multispectral spectral image (MSI)]
as well as corresponding high-spatial resolution panchro-
matic images. While one can choose between the two sets of
images based on the application, the tradeoff between spec-
tral and spatial resolutions has existed for decades. Recently,
several applications, such as feature extraction, image seg-
mentation, change detection, and land-cover classification,
require both spatial and spectral images for detection of
fine features in suburban or urban scenes. For example, in
building detection, a typical residential 43-ft wide house
occupies fewer than 7 pixels on one side (at 2-m resolution
in the MSI), which makes it very difficult for detection algo-
rithms to discern salient line or edge features. While the
current instruments are not capable of providing both spatial
and spectral high-resolution images either by design or by
observational constraints, pan-sharpening can well serve as
a tool to fuse the MSI and panchromatic images.

The literature shows a large collection of pan-sharpening
methods developed,1–7 and recent reviews can be found in
Refs. 8–10. The existing methods can be roughly categorized
into three groups: component substitution (CS) method,11–13

relative spectral contribution (RSC) method,14,15 and multi-
resolution (MR) method.16–19 More detailed categorizations
are surveyed in Refs. 8–10. The CS method substitutes a
high-resolution image for the selected band after spectral
transformation. The RSC methods increase the spatial details
through arithmetical calculations with the panchromatic image.
The MR methods, based on wavelet decompositions and
Laplacian pyramids, inject high-frequency components to

each band of the MSI. Various methods have been proposed
based on this framework to reduce spatial and spectral dis-
tortions such as context-based decision injection,16 mean-
square-error minimization,18 and the introduction of sensor
spectral response.20 However, these approaches enhance the
image by adding details to each multispectral band weighted
by certain coefficients separately, which is by nature a band-
by-band process. Furthermore, they assume a correlation
between the PAN and each MS band. Such an assumption
may not hold for some spectral bands such as the near infra-
red band (NIR-2) for WorldView-2 images, which has no
spectral overlap with the PAN band.21

Among the existing methods, some of them have been
shown to produce very high-quality fused imagery such
as Gram–Schmidt method,22 generalized minimum mean-
square-error (gMMSE) method,18 and University of New
Brunswick (UNB) sharpening method.13 The Gram–Schmidt
method is a multivariate statistics-based approach. It is
patented by Kodak and widely used in many commercial
image-processing packages. The gMMSE method is an
optimized, MR analysis-based approach that uses general
Laplacian pyramid. The gMMSE method injects higher fre-
quency resolution from the PAN to the MSI and minimizes
the root mean squared errors by optimizing fusion parame-
ters through enhancing a degraded version of the MSI and
the PAN. The authors of gMMSE claim to produce very
satisfactory results that outperform the winner of the IEEE
Data Fusion Contest of 2006.23 The UNB method is a
proprietary algorithm and can be classified as a CS-based
statistical approach.23 The method has been shown to pro-
duce a pan sharpened image of very high spatial quality.24

In this article, a novel pan-sharpening method is proposed
which uses the pixel spectrum as its smallest unit of*Address all correspondence to: Weihua Sun, E-mail: wxs8733@rit.edu
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operation and generates resolution-enhanced spectral images
using a mixture model. The underlying assumption of our
approach is that each new spectrum in the high-resolution
fused image is a weighted combination of the immediate
neighboring superpixel spectra in the low-resolution spectral
image. The weights are controlled by a diffusion model
inferred from the panchromatic image that relates the simi-
larity of the pixel of interest to the neighboring superpixels.
The per-pixel-spectrum operation nature is different from the
existing algorithms, which mostly rely on a band-by-band
processing. The results show that our algorithm is capable of
preserving very sharp spatial features indiscernible from the
multispectral images while preserving spectral information
from multispectral images. This is particularly important
for applications (such as land-cover classification) that rely
on accurate spectral information beyond traditional visual
inspection. In addition, our approach is fairly straightforward
and highly parallel. It can be implemented using OpenMP and
compute unified device architecture (CUDA) parallel process-
ing techniques, which significantly reduces the processing
time to a satisfactory timeframe.

This article is organized as follows. Section 2 introduces
the algorithm for our nearest-neighbor diffusion-based pan-
sharpening method. The results of our method are shown in
Sec. 3 together with a discussion of comparison with state-
of-the-art algorithms. Finally, we provide a discussion and
future work in Sec. 4.

2 Method
The pan-sharpening algorithm follows the flowchart
shown in Fig. 1. The algorithm works in two branches. In
the left branch of Fig. 1, a spectral band photometric contri-
bution vector T is obtained through linear regression.
The vector is of size b × 1, where b is the number of
MSI bands. It relates the contribution of the digital counts
of each multispectral band to the panchromatic image. We
assume

P̃ðu; vÞ ¼
Xb
i¼1

TðiÞ ×Miðu; vÞ þ ϵ; (1)

where P̃ðu; vÞ is the digital count of pixel ðu; vÞ in the down-
sampled PAN, TðiÞ is the i’th value in vector T, Miðu; vÞ is
the digital count of corresponding pixel in the i’th band of
MSI, and accounts for regression error. This assumption is
valid, since the spectral response function of each single
band in MSI does not overlap much with each other and
that the ensemble of all MSI bands can cover the spectral
range of the PAN in general. In practice, if certain MSI
bands do not overlap with the PAN spectral bandwidth,
TðiÞ for these bands should be zero or very close to zero.
Since PAN and MSI are not of the same spatial size, to obtain
T, we need to downsample the PAN to fit the size of the MSI
and then perform the linear regression. The vector T is useful
in the following steps to normalize the spectral values. T
can also be obtained from the sensor spectral radiance
responses.21

In the other branch of the flowchart, the difference factors
N½9� from neighboring superpixels are acquired for each pix-
els from the PAN at the original resolution. The factors are
calculated from

Njðx; yÞ ¼
X

ðp;qÞ∈Ωjðx;yÞ
jPðx; yÞ − Pðp; qÞj

j ¼ 1; 2; : : : 9; (2)

where Ωjðx; yÞ defines the diffusion region for each of
the nine neighboring superpixels as shown in Fig. 2, and
ðx; yÞ denotes the position of a pixel in the high-resolution
coordinate. The fundamental idea of the difference factor is
to reflect the difference of the pixel of interest in the PAN to
each of its neighboring superpixels. The difference factors
estimate the similarity of the pixel of interest to its nine
superpixels by comparing a summation of difference. A
zero Njðx; yÞ indicates that the j’th superpixel (counted in
a row-major fashion) is the same as pixel ðx; yÞ and that a
strong diffusion should happen; on the other hand, a high
Njðx; yÞ value suggests that ðx; yÞ is very different from
the j’th superpixel; thus there should be a very restricted dif-
fusion. It is worth mentioning that the integration areas in
Fig. 2 include not only the superpixel itself, but also a
few connecting pixels from the pixel of interest to the super-
pixel. These pixels are introduced to account for cases when
a strong edge is located on the connecting pixels but not
inside the superpixels, which should indicate a signal of a
weak diffusion. The summation over the connected pixels
will avoid such unwarranted diffusion. In the ideal case,
the difference factor should be calculated as a summation
of the shortest geodesic distance from the point of interest
to each pixel in the superpixels, but this will require sophis-
ticated optimization techniques such as ant colony optimiza-
tion;25,26 Eq. (2) poses as a valid approximation to this ideal
case, since the diffusion areas are fairly small. In addition,
the estimation can significantly reduce the computation
time. It is worth mentioning that the integration regions are
not only suitable for 4 × 4 resolution scale, but also appli-
cable to any integer resolution scale as well. The general
rule for mapping the integration regions is to cover the
i’th superpixel as well as the center subpixels leading to
that superpixel. Although there is no rigorous physical evi-
dence to support such mapping scheme, it is consistent withFig. 1 Flowchart for the pan-sharpening algorithm.
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our intuition and has been empirically tested to perform very
well in various scenarios.

Njðx; yÞ provides a similarity metric between pixel ðx; yÞ
to its neighboring superpixels. It is then possible to generate
the new spectrum simulating the problem of anisotropic
diffusion27 as

HMðx;yÞ¼ 1

kðx;yÞ
X9
j¼1

exp

�
−
Njðx;yÞ

σ2

�

×exp
�
−
kðx;yÞ−ðxu;v;yu;vÞjx;y;jk

σ2s

�
Mðu;v;x;y;jÞ;

(3)

where Mðu; v; x; y; jÞ is the spectrum vector of neighboring
superpixels ðu; vÞ corresponding to pixel ðx; yÞ, and j is in
accordance with diffusion regions illustrated in Fig. 2. xu;v
and yu;v are the center pixel locations of the nine neighboring
superpixels ðu; vÞ. σ and σs are the intensity (range) and spa-
tial smoothness factors that control the sensitivity of the
diffusion, respectively. Equation (3) relates diffusion factors
to a multiplication of pixel value similarity and spatial close-
ness. Inside the summation, exp½−Njðx; yÞ∕σ2� gives a sim-
ilarity measure between pixel ðx; yÞ and its neighboring
superpixels, whereas exp½−kðx; yÞ − ðxu;v; yu;vÞjx;y;jk∕σ2s �
provides a spatial closeness measure of pixel ðx; yÞ to the
center of the neighboring superpixels. kðx; yÞ is a normali-
zation factor calculated as

kðx; yÞ ¼
P

9
j¼1 exp

h
− Njðx;yÞ

σ2

i
× exp

h
− kðx;yÞ−ðxu;v;yu;vÞjx;y;jk

σ2s

i
Mðu; v; x; y; jÞ × T

Pðx; yÞ ;

so that

HMðx; yÞ × T ¼ Pðx; yÞ − ϵ; (4)

where T is obtained from the linear regression by Eq. (1).
The pan-sharpened image HM will resemble the PAN, in
which it preserves the gradient information from the PAN.
The algorithm also uses a linear mixture model as shown
in Eq. (3), so that a spectrum in the MSI is the smallest

element of operation. The linear mixture model reduces
color distortion and preserves spectral integrity.

3 Results
Our algorithm has been implemented to work with no sensor
dependency. In this article, we tested our algorithm on a
number of WorldView-2, GeoEye-1, and USGS EO-1 sensor
images. These scenes are summarized in Table 1. The spatial
smoothness factor σs is set to 2.5 for 1∶4 spatial ratio and 1.9
for 1∶3 spatial ratio. The intensity factor σ is set adaptively
using local similarity, so that

σ2ðx; yÞ ¼ min½Njðx; yÞ� j ¼ 1; 2; : : : 9; (5)

where Nj is the difference factor of the nine neighbors given
by Eq. (2). A discussion for the proper choice of σ and σs is
provided in Sec. 6.

3.1 Spatial Analysis

The first test scene is a WorldView-2 image of a parking area
in Rochester, New York, captured from June 2009 shown in
Fig. 3. The scene is very complex, in which it comprises
abundant objects (roads, vegetation, houses, and cars) and
a great number of them are fairly small. We performed
the fusion technique described in Sec. 2. The spectral
band contribution vector T is fitted from linear regression
using all the pixels across the entire scene and is shown
in Table 2. In this step, the PAN image is downsampled
to match the spatial size of the MSI; thus the regression
can be carried out using all the pixels in the downsampled
PAN and the MSI. The error is calculated as the root mean
squared error over the mean value of the PAN. Since T is
obtained through linear regression, it may not exactly reflect
the contribution of each multispectral band to the panchro-
matic band; but the values in Table 2 show that the digital
counts in PAN are mostly contributed from the blue to
the red edge bands, which is consistent with the spectral radi-
ance response of the WorldView-2 sensor.21 Although we
see a slight negative contribution from the Coastal band,

Fig. 2 Illustrations for calculating the difference factors. The integra-
tion regions Ωj (shaded pixels) for the pixel of interest (blue) are
shown for the nine nearest-neighboring superpixels (denoted by
the 4 × 4 grids enclosed in the thick borders).
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Table 1 Description of the dataset used in this article.28–31

Scene name PAN size (pixels) Sensor type PAN resolution (m) Resolution scale PAN spectral range (nm) MSI spectral range (nm)

Parking lot 652 × 652 WorldView-2 0.52 4 450 to 800 400 to 1040

Recycling site 652 × 652 WorldView-2 0.52 4 450 to 800 400 to 1040

Rome 480 × 480 GeoEye-1 0.41 4 450 to 800 450 to 920

Victor mall 903 × 903 EO-1 10 3 480 to 690 433 to 2350

Fig. 3 Parking area scene. Panchromatic image is shown in (a), the RGB bands are shown in (b), and the
color-IR in (c) with nearest-neighbor interpolation.

Table 2 The spectral band contribution vector for the parking area scene.

Band no. (i) Coastal Blue Green Yellow Red Red edge NIR1 NIR2 Error

T i −0.026 0.214 0.059 0.174 0.190 0.136 0.060 0.038 2%

Fig. 4 The pan-sharpened image [RGB bands (a) and color-IR (b)] of the parking area scene. The image
histograms are matched with the MSI in Fig. 3.
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Fig. 5 Recycling site scene from WorldView-2 Imagery. (a) Panchromatic image, (b) original MSI RGB
bands, and (c) original MSI color-IR bands.

Fig. 6 The pan-sharpened RGB (a) and color-IR (b) bands of the recycling site scene.

Fig. 7 Geoeye image of the Rome scene. (a) Panchromatic image, (b) original MSI RGB bands, and
(c) original MSI color-IR bands.
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Fig. 8 Pan-sharpened image of the Rome scene in RGB bands (a) and color-IR bands (b).

Fig. 9 EO-1 imagery of Victor, New York. (a) Panchromatic image, (b) original MSI RGB bands, and
(c) original MSI color-IR bands.

Fig. 10 Pan-sharpened EO-1 images in RGB bands (a) and color-IR bands (b).
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the value is fairly small and does not appear to have any
effect on our final results.

The synthesized image of our diffusion-based pan-sharp-
ening approach is shown in Fig. 4, where the RGB bands and
the color-IR bands are displayed and their histograms are
matched with the images shown in Fig. 3 for visual compari-
son. The pan-sharpened images show good spatial and color

quality. The algorithm preserves the strong edges well in
both the PAN and the MSI. One can clearly see the cars
and the parking lane marks as well as the edges of the build-
ings. The RGB colors in the MSI are well maintained for the
uniform areas such as the building rooftops and the parking
spots. The color-IR image also indicates that our method
works not only for RGB, but also for other bands as well.

Fig. 11 Comparison of the various algorithms on the residential area scene. Panchromatic image and
the RGB bands of the original images are shown in the upper left and upper middle. The marked pixels
are used for spectra study, see Fig. 12 for details. The RGB bands of Gram-schmidt method, gMMSE,
UNB and our method are shown in sequentially.
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Fig. 12 Spectral comparison between the various approaches in the residential area scene. The spectra
of the truth and produced from the various methods are shown. Figs. (a) to (h) correspond to the spectra
of the pixels marked in PAN image of Fig. 11.
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The second test scene is a recycling site also from the
WorldView-2 sensor. The PAN, RGB, and color-IR from
the MSI are shown in Fig. 5. This site possesses a lot of
fine spatial details. The pan-sharpening result is shown in
Fig. 6. Similar to the results of the parking site scene, the
image preserves well the spatial details with very accurate
spectral/color information.

We also tested our algorithm on a GeoEye-1 sensor image
of Rome, Italy, shown in Fig. 7. The imagery is composed of
four bands covering visible and near-infrared. This scene
contains rich structural details in the Colosseum and the
building complexes. The pan-sharpened image is shown in
Fig. 8. The spectral band contribution vector, obtained
through linear regression, shows that the PAN band corre-
lates mostly with the green and red bands, next highest
with near-infrared and least with the blue band; this is rea-
sonable considering that the PAN band covers from visible to
near-IR wavelengths from 450 to 900 nm. The fused image
shows that our algorithm also works well for complex urban
GeoEye-1 sensor imagery. The method can successfully re-
cover missing structural elements in the MSI from the PAN;
on the other hand, the color-IR image indicates that the algo-
rithm also properly preserves the signals in the NIR-2.

In an effort to evaluate the performance of our methods on
lower resolution imagery, we tested our algorithm on the

USGS EO-1 dataset scene of Victor, New York, shown in
Fig. 9. The EO-1 multispectral dataset contains nine spectral
bands with 30-m spatial resolution for the spectral image and
10-m resolution for the PAN band. Although the spatial res-
olution ratio between the PAN band and the multispectral
bands is 3∶1, we can still follow the similar pattern in
Fig. 2 to calculate local difference factors. The resultant
pan-sharpened image shown in Fig. 10 indicates that our
algorithm also works well on lower resolution imagery.

3.2 Spectral Analysis

In addition to visually observing the four complex scenes
shown in the previous section, we also compared our results
with several existing state-of-the-art pan-sharpening methods.
These methods include Gram–Schmidt method,22 gMMSE
method,18 and UNB sharpening method.13 These methods
have been shown to produce high-quality fusion imagery,
and brief descriptions of them can be found in the Sec. 1.
The Gram–Schmidt method is integrated in ENVI; the
authors of gMMSE have published a standalone package
on their website, and the UNB method is distributed in
the FuzeGo package that works on a trial license. Because
these algorithms are available, a comparison is possible.

The visual comparison of these algorithms can be made in
Fig. 11 on a residential area from WorldView-2 image. It can
be seen that all of these pan-sharpening approaches produce
acceptable results. However, the edges in the Gram–Schmidt
pan-sharpened image appear blurred. The gMMSE method
produces better results, but the edges do not resemble
the same level of sharpness in the PAN band. One possible
reason is that both of these methods rely on a bicubic inter-
polation (or an alternative) as their basis for further process-
ing, which leads to overly smooth edges if not correctly
compensated. In comparison, both the UNB and our method
produce images of very sharp contrast.

3.2.1 Pixel spectra evaluation

The spectral fidelity is another factor for evaluation of pan-
sharpening algorithms. In this effort, we sample a number of
signature pixels in relatively uniform areas to assess the

Table 3 Spectral differences of sampled pixels in Fig. 12.

Euclidean distance difference Spectral angle difference

G-S gMMSE UNB NNDiffuse G-S gMMSE UNB NNDiffuse

Road (#1) 324.08 79.04 199.73 8.92 0.182 0.064 0.152 0.0021

Path (#2) 193.54 71.94 104.38 18.90 0.188 0.084 0.119 0.0038

Roof (#3) 212.46 49.97 140.43 5.37 0.161 0.055 0.161 0.0015

Water (#4) 177.09 154.70 162.74 40.96 0.121 0.145 0.148 0.0056

Shadow (#5) 120.62 27.00 87.22 2.93 0.109 0.033 0.082 0.0032

Grass (#6) 63.40 42.64 49.64 35.87 0.029 0.017 0.024 0.0162

Roof (#7) 368.92 37.72 250.53 29.87 0.191 0.029 0.162 0.0017

Path (#8) 183.79 96.91 108.04 43.18 0.117 0.073 0.099 0.0176

Note: Best (smallest) values are shown in bold.

Table 4 Comparison of the accuracy statistics for the degraded
WorldView-2 recycling site scene.

SAM EUD ERGAS

Bi-cubic 0.0588 31.5032 3.0698

Gram–Schmidt 0.0834 40.0608 3.3547

gMMSE 0.0608 23.2981 2.1721

UNB 0.0798 31.8118 2.6984

NNDiffuse 0.0578 22.9945 2.1679

Note: Best (smallest) values are shown in bold.
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spectral difference. These pixels are marked in the PAN
image in Fig. 11. These pixels cover a large set of materials
in the scene and are uniform around their neighborhood. We
use the spectra from the original MSI image as ground truth
for comparison with a reasonable assumption that the spectra
around such uniform areas are most likely unchanged. The
spectra resulting from the pan-sharpening algorithms are
shown in Fig. 12, and the spectral difference expressed
in spectral angle difference and Euclidean distance difference
are shown in Table 3. It can be seen that both the gMMSE
and our method can well preserve the spectra of these uni-
form pixels, whereas the spectra from Gram–Schmidt and
UNB methods are very different from the truth. The majority
of the error in our method comes from slight spectral bleed-
ing from regions with weak edges. For example, the rooftop
edge between pixel #7 and the grass is very weak in the PAN
band; due to the fact that our algorithm is based on the differ-
ence distribution on the PAN, it allows a small amount of
diffusion from the grass spectrum. The result is a slight
increased digital count in the infrared band of the pan-sharp-
ened pixel spectrum. In general, our method is seen to pro-
duce very small error by comparison. The spectral distortion
by the UNB method can also be reflected by observing the
color RGB images in Fig. 11; for example, the asphalt pave-
ment is much darker in the UNB pan-sharpened image than
in the original MSI image, and the color of the house roof-
tops is shifted. While the spectra in the visible regions are
intact, the Gram–Schmidt method also suffers from severe
spectral distortion in the near-infrared region. The Gram–
Schmidt method assumes a statistical correlation between
the PAN and each MSI band; however, the PAN band for
the WorldView-2 imagery does not cover the NIR-2. The
lack of correlation or even existence of anti-correlation
results in the distortion of spectra in the infrared bands.
One can also observe such spectral distortion in the NIR-2
from the images fused by both gMMSE and UNB; while our

algorithm performs very well on most of the infrared regions,
as shown in Fig. 12. In fact, most of the existing algorithms
produce pan-sharpened images based on the band-to-band
correlation, whereas our method treats the pixel spectra as
the smallest element of operation which leads to relatively
smaller spectral distortion even for the noncorrelated or
low-correlated bands. In addition, our method operates
locally and the results are always identical with no depend-
ence on the size of the scene with given T, σ, and σs. In com-
parison, most of the existing pan-sharpening algorithms
rely, to a certain degree, on the global statistics of the scene,
which may lead to somewhat different results depending on
the scene content.

3.2.2 Statistical comparison

Another popular evaluation technique degrades the PAN and
MSI images and uses the original MSI as the ground truth
for comparison; the metrics include spectral angle mapper
(SAM), spectral Euclidean distance (EUD), and erreur rela-
tive globale adimensionnelle de synthese ( ERGAS).32 SAM
between two spectral vectors ~v1 and ~v2 is defined as

SAMð~v1; ~v2Þ ¼ cos−1
�

~v1 · ~v2
k~v1k × k~v2k

�
; (6)

where · indicates the inner product. SAM basically computes
a normalized correlation between two vectors. EUD is
defined as

EUDð~v1; ~v2Þ ¼ k~v1 − ~v2k; (7)

and ERGAS is defined as

ERGAS ¼ 100

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

�
rmsek
μk

�
2

vuut ;

Fig. 13 Comparison of error histogram for the degraded WorldView-2 recycling site scene. (a) Error
histogram w.r.t SAM, (b) Error histogram w.r.t to spectral EUD.
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where N is the total number of bands, R is the scale ratio,
rmsek is the root-mean-square error between the k’th fused
band and the reference band, and μk is the mean of the k’th
band. ERGAS is a measure of global radiometric distortion
of the fused images, and smaller ERGAS indicates better
fusion results. We tested different algorithms on a degraded
recycling site scene, and the metrics are shown in Table 4.
The results are consistent with the above comparisons: our
method and the gMMSE method preserve the overall spectra
better than the Gram–Schmidt and the UNB methods. In
addition to the global metric, cumulative error histograms
of SAM and EUD are plotted in Fig. 13. While the global
metric is capable of reflecting the fusion performance, the
error histogram can better reflect the error distribution.
Higher percentile in the lower error range indicates better
fusion results. By observing the histogram, our method is
able to produce much higher percentage of low SAM
error (below 0.05) than the other methods; as for the
EUD error, our method and gMMSE method have similar
error distribution and perform better than the other two
methods in the lower error range. The comparison reveals
that our method is performing on the same level as the lead-
ing algorithms on statistical spectral fidelity with a slight
advantage. It is worth mentioning that these evaluation
metrics assume that the statistical signature and fusion per-
formances are invariant to scale change; however, it has been
suggested in recent literature18,24,33,34 that such an evaluation
scheme is not practical especially for high-resolution data
particularly in highly detailed urban areas where pan-sharp-
ening is most needed. Thus, such comparison is only pro-
vided as one factor for evaluation.

In this section, we performed a comprehensive compari-
son of different pan-sharpening algorithms through visual
comparison, spectral comparison, and global statistics.
Visual comparison indicates both UNB and our nearest-
neighbor diffusion algorithm are more capable of enhancing
the spatial sharpness than the other two methods; on the other
hand, spectral accuracy is better reserved by both gMMSE
and our algorithm through spectral and global statistics
comparisons. Our method has shown to significantly sup-
press spectral angle distortion in comparison with the other
methods. The comprehensive comparisons carried out in this
section suggest that our nearest-neighbor diffusion-based
approach can produce higher quality pan-sharpened spectral
images than some state-of-the-art existing algorithms.

4 Discussion and Future Work
In this article, we have shown our nearest-neighbor diffu-
sion-based pan-sharpening method to have superior perfor-
mance both in spatial/spectral quality and in computational
time. The novelty of our approach lies in its per-spectra oper-
ation and the utilization of a diffusion model to solve the
multispectral fusion problem. Our method operates locally
and does not rely on global optimization and thus will pro-
duce identical results regardless of the scene size or scene
contents. The parallel nature of our algorithm allows fast
processing on multicore devices and achieves significant
reduction of processing time.

Our method relies on two external parameters: intensity
smoothness factor σ and spatial smoothness factor σs that
control the smoothness of the diffusion. Smaller values of
σ restricts diffusion and thus produces sharper images but

also introduces more noise, whereas larger values of σ
will produce smoother contents with less noise. The proper
choice of σ can be determined based on the application of the
pan-sharpened image. σ is suggested to be tuned to a smaller
value if it is for visual observation and inspection, while
applications like classification and segmentation can use a
larger σ to enhance strong structural features and to suppress
noise artifacts. In addition, the scene contrast and complexity
can also affect the choice of σ. Scenes with high contrast in
PAN will need less diffusion sensitivity thus entail higher σ,
and the same is true for complex scenes to reduce the influ-
ence of possible noise. In practice, σ2 is set to dynamically
adjust to local similarity, as shown in Eq. (5), and σs is set to
a value that will mostly resemble a bicubic interpolation ker-
nel, which roughly gives σs ¼ scale × 0.62. It is necessary to
point out that the choice of σ and σs does not appear to have
much impact on the visual results but will produce better
numerical results compared with our previous findings.35

General readers may be interested in the execution speed
of our algorithm, and we have implemented the algorithm in
C/C++ to examine this. Our algorithm performs intensive
localized operations. It is natural to extend our algorithm to
work in parallel by taking advantage of the multicore archi-
tectures in modern day central processing unit (CPUs) and
graphics processing unit (GPUs). We used OpenMP to accel-
erate our algorithm on the CPU. On the GPU, the algorithm
is implemented using the CUDA architecture. Empirical
analysis on an image set made up of a 4000 × 4000 panchro-
matic image and a 1000 × 1000 multispectral image showed
an increase in processing speed of one order of magnitude on
the OpenMP CPU and two orders of magnitude on the GPU.
More analysis is required to fully characterize the computa-
tional speed-up potential of this algorithm.

The proposed algorithm works well for urban scenes
especially for objects with sharp edges observable in the
PAN, but it may occasionally suffer from spectral bleeding
at lower contrast PAN edges. In these cases, our algorithm
may benefit by using IHS or UNB pan-sharpened images as
a prior to produce difference factor N½9�, since these two
methods have been known to preserve very high-spatial
details. Furthermore, the difference factors can incorporate
not only difference in the PAN, but also spectral difference
from the MSI.36 In our method, we normalized the final spec-
tra by stipulating pixel radiometric integrity (HM × T ¼ p);
however, other constraints can also be incorporated to obtain
more accurate results, such as the spectra radiometric integ-
rity calculated by

X
ðx;yÞ∈superpixelðu;vÞ

HMiðx; yÞ ¼ Miðu; vÞ: (8)

In addition, our algorithm always assumes positive diffu-
sion weights due to the exponent, and the implication is that
only spectral summation, but no subtraction, is considered.
In practice, spectral subtraction is needed to produce sub-
pixel spectral accuracy; thus, adjusting diffusion weights
to incorporate negative diffusion can also be designed to
improve spectral and spatial accuracies.
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