Light propagation and acoustic vibrations can be controlled by designing the bandgap of phoxonic crystals, which support photonic and phononic bandgaps simultaneously. In this study, we numerically investigated the optical and mechanical properties of a clover-shaped 6H-SIC crystal microcavity. The results indicate that the frequency range of the phononic bandgap can be manipulated by adjusting the geometry of the structure, resulting in a wide phononic bandgap over 12 GHz centered at 30.8 GHz. The structure also supports strong localized optical modes for visible light with a |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Crystals
Silicon carbide
Optical microcavities
Photonic crystals
Nanoparticles
Vibration
Geometrical optics