1 July 1996 Integrated optical sigma-delta modulators
Phillip E. Pace, Stephen J. Ying, John P. Powers, Ronald J. Pieper
Author Affiliations +
Modern avionics equipment, such as superresolution direction-finding systems (frequency band 0.3 to 3 MHz), now require resolutions greater than 15 bits. Oversampled analog-to-digital converter architectures offer a means of exchanging resolution in time for that in amplitude and represent an attractive approach to implementing precision converters without the need for complex precision analog circuits. Using oversampling techniques based on sigma-delta (??) modulation, a convenient trade-off exists between sampling rate and resolution. One of the major advantages of integrated optics is the capability to efficiently couple wideband signals into the optical domain. Typically, ?? processors require simple and relatively low precision analog components and thus are well suited to integrated optical implementations. The current ?? methodology is reviewed and the design of the single-bit, integrated optical ?? modulator is presented. Simulation results for both first- and second-order architectures are presented by evaluating the transfer characteristics numerically. A 16-bit f 0=1 MHz design (oversampling ratio of 132) is also quantified.
Phillip E. Pace, Stephen J. Ying, John P. Powers, and Ronald J. Pieper "Integrated optical sigma-delta modulators," Optical Engineering 35(7), (1 July 1996). https://doi.org/10.1117/1.600613
Published: 1 July 1996
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications and 6 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Integrated optics

Modulators

Quantization

Modulation

Interference (communication)

Structured optical fibers

Interferometers

RELATED CONTENT


Back to Top