1 December 2006 Temporal target tracking in hyperspectral images
Louisa Varsano, I Yatskaer, Stanley R. Rotman
Author Affiliations +
Abstract
This research addresses the problem of tracking a moving point target in a time sequence of hyperspectral images; we focus on the detection of moving targets with staring technologies. In these applications, the images consist of targets moving at subpixel velocity in backgrounds that are influenced by both evolving clutter and noise. The demand for a low false-alarm rate on one hand and a high probability of detection on the other makes the tracking a challenging task. The use of hyperspectral images should be superior to current technologies, due to the benefit of simultaneously exploiting two target-specific properties: the spectral target characteristics and the time-dependent target behavior. We propose an algorithm that is in two steps. The first step is the transformation of each of the hyperspectral images forming the sequence into a two-dimensional image using a known point-target detection-acquisition algorithm. In the second step, target detection and tracking are performed by the means of time-domain processing. A match-filter technique is used for the hyperspectral image transformation; a variance-filter algorithm is developed to detect the presence of targets from the temporal profile of each pixel while suppressing clutter-specific influences.
©(2006) Society of Photo-Optical Instrumentation Engineers (SPIE)
Louisa Varsano, I Yatskaer, and Stanley R. Rotman "Temporal target tracking in hyperspectral images," Optical Engineering 45(12), 126201 (1 December 2006). https://doi.org/10.1117/1.2402139
Published: 1 December 2006
Lens.org Logo
CITATIONS
Cited by 30 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Detection and tracking algorithms

Hyperspectral imaging

Target detection

Infrared imaging

Optical tracking

Optical engineering

Hyperspectral target detection

RELATED CONTENT


Back to Top