Contents

vii Authors
ix Conference Committee

NANOSCIENCE + ENGINEERING PLENARY SESSION

9544 03 Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions (Plenary Paper) [9544-501]

ACTIVE METAMATERIALS I

9544 0D Coherent effects in nonlinear metamaterial-based devices (Invited Paper) [9544-8]

HYPERBOLIC METAMATERIALS II

9544 17 Mid-infrared hyperbolic metamaterial based on graphene-dielectric multilayers (Invited Paper) [9544-36]
9544 18 LCR model for hyperbolic metamaterials [9544-37]
9544 19 Optical mode confinement in three-dimensional Al/SiO2 nanocavities with hyperbolic dispersion [9544-39]

MID INFRARED AND THERMAL

9544 1D Design and analysis of chevrons shaped split ring resonator in the mid-infrared region [9544-43]
9544 1F Experimental verification of classical electromagnetically induced transparency in conductors [9544-45]

MANIPULATING LIGHT WITH METAMATERIALS

9544 1J Multi-foci metalens for spin and orbital angular momentum interaction [9544-49]
9544 1K Birefringence modulation of thermally driven metal nanograting [9544-50]

METADEVICES AND METASYSTEMS I

9544 1O Design and analysis of near perfect metamaterial reflector in visible range [9544-54]
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9544</td>
<td>The silicon photomultiplier as a metasystem with designed electronics as metadevice for a new receiver-emitter in visible light communications</td>
<td>[9544-55]</td>
</tr>
<tr>
<td></td>
<td>METADEVICES AND METASYSTEMS II</td>
<td></td>
</tr>
<tr>
<td>9544</td>
<td>Design theory of thin film hyperbolic metamaterial colimators</td>
<td>[9544-59]</td>
</tr>
<tr>
<td></td>
<td>RANDOMNESS AND FLUCTUATIONS</td>
<td></td>
</tr>
<tr>
<td>9544</td>
<td>Giant field fluctuations in dielectric metamaterial and Raman sensor</td>
<td>[9544-64]</td>
</tr>
<tr>
<td>9544</td>
<td>A non-Monte Carlo approach to analyzing 1D Anderson localization in dispersive metamaterials</td>
<td>[9544-67]</td>
</tr>
<tr>
<td></td>
<td>METASURFACES I</td>
<td></td>
</tr>
<tr>
<td>9544</td>
<td>Vertical split-ring resonators for plasmon coupling, sensing and metasurface (Invited Paper)</td>
<td>[9544-69]</td>
</tr>
<tr>
<td>9544</td>
<td>Cascaded metasurfaces for broadband antenna isolation</td>
<td>[9544-70]</td>
</tr>
<tr>
<td>9544</td>
<td>Anisotropic impedance surfaces for enhanced antenna isolation</td>
<td>[9544-71]</td>
</tr>
<tr>
<td></td>
<td>NOVEL PHENOMENA AND METHODS</td>
<td></td>
</tr>
<tr>
<td>9544</td>
<td>Metamaterial models of curved spacetime</td>
<td>[9544-86]</td>
</tr>
<tr>
<td>9544</td>
<td>Electron beam excitation of a CSRR loaded waveguide for Cherenkov radiation</td>
<td>[9544-87]</td>
</tr>
<tr>
<td>9544</td>
<td>Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity</td>
<td>[9544-88]</td>
</tr>
<tr>
<td></td>
<td>LOW-FREQUENCY MATERIALS</td>
<td></td>
</tr>
<tr>
<td>9544</td>
<td>Polarization and angle dependent transmission through microwave metamaterials in the Ku frequency band</td>
<td>[9544-92]</td>
</tr>
<tr>
<td>9544</td>
<td>Extraordinary terahertz transmission through electrically small particles</td>
<td>[9544-93]</td>
</tr>
</tbody>
</table>
POSTER SESSION

9544 2R Hybrid plasmonic nanosandwich structures [9544-95]

9544 2S Adjustment characteristics in terahertz transmission through a split ring resonator-based metamaterial [9544-96]

9544 2V Shaping the light distribution of strongly focused systems for efficient excitation of optical nano-circuits [9544-99]

9544 2W Quantum toroidal moments of nanohelix eigenstates [9544-100]

9544 2X Mie resonance in the arrays of dielectric rods in air [9544-101]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Afanas’ev, Konstantin N., 1Y
Al-El-Aoud, Yassine, 1F
Akgül, Akim, 1F
ALShareef, Mohammed R., 2P
Alsheheir, Soaad, 2R
Bacco, Carla, 19
Bie, Yehua, 2S
Boginskaya, Irina A., 1Y
Budashov, Igor A., 1Y
Castañeda, L. F., 1P
Castaño, J. F., 1P
Chang, You-Chia, 17
Chen, Wei Ting, 23
Cleary, Justin W., 2M
Couture, Paul A., 2O
Dalal, Reena, 2X
Encinosa, Mario, 2W
Fiddy, Michael A., 18, 1T
Friedman, Jerry, 24
Fullager, Daniel B., 1T
Ginn, James C., 2M
Gordon, Reuven, 03
Gutierrez, R. M., 1P
Harshbarger, Derek, 24
Hendandez, A., 1, 1P
Hirschmugl, Carol, 2M
Hrabar, Silvio, 2V
Hsu, Wei-Lun, 23
Huang, Kun, 1J
Huang, Yao-Wei, 23
Ishi, Miho, 1K
Ivanov, Andrey V., 1Y
Iwami, Kentaro, 1K
Jablons, Allan, 24
Kabra, Yogita, 2X
Kelly, Priscilla, 19
Khalizadeh-Rezaee, Farnood, 2M
Kildäschev, Alexander V., 17
Kissel, Glen J., 21
Kumar, A., 1D
Kurochkin, Ilya N., 1Y
Kussow, Adil-Geral, 1F
Kuznetsova, Lyuba, 19
Lagarkov, Andrey N., 1Y
Lakhtakia, Akhlesh, 2K
Lee, David A., 2O
Lefitza, Rosa, 2L
Liao, Chun Yen, 23
Liu, Ai Qun, 23
Liu, Chang-Hua, 17
Liu, Che-Hung, 17
Luo, Jun, 2S
Mackay, Tom G., 2K
Marder, Seth R., 17
Malin, Mohammed, 2R
Mehmood, M. Q., 1J
Mei, Shengtao, 1J
Miragliaotta, Joseph A., 24, 25
Musselman, Randall L., 2O
Nagasaki, Hideaki, 1K
Nandan, N., 1D
Narimanov, Evgenii E., 17
Nath, Janardan, 2M
Norris, Theodore B., 17
Okorn, Boris, 2V
Panjwani, Deep, 2M
Peale, Robert E., 2M
Pinchuk, Anatoly O., 2O
Qiu, Cheng-Wei, 1J
Ramahi, Omar, 2P
Rosenbury, C. A., 18
Ryzhikov, Ilya A., 1Y
Sabotkin, Marjan, 2R
Saini, T. S., 1D
Salandrino, Alessandro, 0D
Sancho-Parramon, Jordi, 2V
Sang, Hongshi, 2S
Sarychev, Andrey K., 1Y
Scott, Robert, 24
Shankhwar, Nishant, 1O
Sharpley, Emmy, 2L
Shelton, David J., 2M
Shimura, Takashi, 1K
Shrekenhamer, David, 24, 25
Sievenpiper, Daniel F., 24, 25
Singh, Ravindra Kumar, 1D, 1O, 2X
Smith, Evan M., 2M
Sun, Greg, 23
Tsai, Din Ping, 23
Tsai, Wei-Yi, 23
Umehara, Norihiro, 1K
Vedral, James L., 2O
Williamson, Johnny, 2W
Wu, Pin Chieh, 23
Xie, Changsheng, 2S
Yesiltas, Mehmet, 2M
Zhang, Siyuan, 17
Zhang, Xinyu, 2S
Zheludev, Nikolay I., 23
Zhong, Zhaohui, 17
Conference Committee

Symposium Chairs
Satoshi Kawata, Osaka University (Japan)
Manijeh Razeghi, Northwestern University (United States)

Symposium Co-chairs
David L. Andrews, University of East Anglia (United Kingdom)
James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs
Nader Engheta, University of Pennsylvania (United States)
Mikhail A. Noginov, Norfolk State University (United States)
Nikolay I. Zheludev, University of Southampton (United Kingdom)
and Nanyang Technological University (Singapore)

Conference Program Committee
Andrea Alù, The University of Texas at Austin (United States)
David L. Andrews, University of East Anglia (United Kingdom)
Pierre Berini, University of Ottawa (Canada)
Alexandra Boltasseva, Purdue University (United States)
Igal Brener, Sandia National Laboratories (United States)
Mark Brongersma, Stanford University (United States)
Che Ting Chan, Hong Kong University of Science and Technology
(Hong Kong, China)
Hongsheng Chen, Zhejiang University (China)
Jennifer A. Dionne, Stanford University (United States)
Harald W. Giessen, Universität Stuttgart (Germany)
Yuri S. Kivshar, The Australian National University (Australia)
Jacob B. Khurgin, Johns Hopkins University (United States)
Uriel Levy, The Hebrew University of Jerusalem (Israel)
Natalia M. Litchinitser, University at Buffalo (United States)
Martin W. McCall, Imperial College London (United Kingdom)
Albert Polman, FOM Institute for Atomic and Molecular Physics
(Netherlands)
Gennady B. Shvets, The University of Texas at Austin (United States)
David R. Smith, Duke University (United States)
Costas M. Soukoulis, Iowa State University (United States)
Mark I. Stockman, Georgia State University (United States)
Philippe Tassin, Chalmers University of Technology (Sweden)
Sergei Tretyakov, Aalto University School of Science and Technology
(Finland)
Din Ping Tsai, National Taiwan University (Taiwan)
Augustine M. Urbas, Air Force Research Laboratory (United States)
Martin Wegener, Karlsruher Institut für Technologie (Germany)
Xiang Zhang, University of California, Berkeley (United States)

Session Chairs
NanoScience + Engineering Plenary Session
Satoshi Kawata, Osaka University (Japan)
David L. Andrews, University of East Anglia (United Kingdom)

1 Toroids and Vortices
Mikhail A. Noginov, Norfolk State University (United States)

2 Active Metamaterials I
Philippe Tassin, Chalmers University of Technology (Sweden)

3 Active Metamaterials II
Zubin Jacob, University of Alberta (Canada)

4 Control of Physical Phenomena with Metamaterials
Mikhail Lapine, University of Technology, Sydney (Australia)

5 Hyperbolic Metamaterials I
Luca Alloatti, Massachusetts Institute of Technology (United States)

6 Atomic Scale Metamaterials
Natalia M. Litchinitser, University at Buffalo (United States)

7 Dielectric and Semiconductor Metamaterials
Adil-Gerai Kussow, University of Massachusetts Lowell (United States)

8 Hyperbolic Metamaterials II
Adil-Gerai Kussow, University of Massachusetts Lowell (United States)

9 Mid Infrared and Thermal
Viktor A. Podolskiy, University of Massachusetts Lowell (United States)

10 Manipulating Light with Metamaterials
Joshua D. Caldwell, U.S. Naval Research Laboratory (United States)

11 Metadevices and Metasystems I
Ertugrul Cubukcu, University of Pennsylvania (United States)

12 Metadevices and Metasystems II
Alberto Piqué, U.S. Naval Research Laboratory (United States)
13 Randomness and Fluctuations
Zhaozhu Li, The College of William & Mary (United States)

14 Metasurfaces I
Andrey K. Sarychev, Institute for Theoretical and Applied
Electrodynamics (Russian Federation)

15 Metasurfaces II
Mayer A. Landau, Air Force Research Laboratory (United States)

16 Metasurfaces III
Arseniy I. Kuznetsov, A*STAR - Data Storage Institute (Singapore)

17 Novel Phenomena and Methods
Xingjie Ni, University of California, Berkeley (United States)

18 Low-Frequency Materials
David Wilkowski, Nanyang Technological University (Singapore)