Front Matter: Volume 9913

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>xiii</td>
<td>Authors</td>
</tr>
<tr>
<td>xxi</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

Part One

SESSION 1 PROJECT OVERVIEWS AND PROGRESS I

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 02</td>
<td>SKA Telescope Manager (TM): status and architecture overview (Invited Paper) [9913-1]</td>
</tr>
<tr>
<td>9913 03</td>
<td>The software architecture to control the Cherenkov Telescope Array [9913-2]</td>
</tr>
<tr>
<td>9913 04</td>
<td>The transition from construction to operations on the ALMA control software [9913-3]</td>
</tr>
</tbody>
</table>

SESSION 2 TELESCOPE CONTROL I

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 05</td>
<td>Improving the pointing and tracking performance of the Keck telescopes [9913-106]</td>
</tr>
<tr>
<td>9913 06</td>
<td>The active surface control system for the Tian Ma Telescope [9913-6]</td>
</tr>
<tr>
<td>9913 07</td>
<td>Computer-aided star pattern recognition with astrometry.net: In-flight support of telescope operations on SOFIA [9913-7]</td>
</tr>
<tr>
<td>9913 08</td>
<td>Control and monitoring software for the Greenland Telescope [9913-8]</td>
</tr>
<tr>
<td>9913 09</td>
<td>LSST control software component design [9913-9]</td>
</tr>
</tbody>
</table>

SESSION 3 SOFTWARE QUALITY AND TESTING

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 0A</td>
<td>An automated qualification framework for the MeerKAT CAM (Control-And-Monitoring) [9913-10]</td>
</tr>
<tr>
<td>9913 0B</td>
<td>Rules of thumb to increase the software quality through testing [9913-11]</td>
</tr>
<tr>
<td>9913 0C</td>
<td>Behavior driven testing in ALMA telescope calibration software [9913-12]</td>
</tr>
<tr>
<td>9913 0D</td>
<td>The evolution of the simulation environment in the ALMA Observatory [9913-13]</td>
</tr>
<tr>
<td>9913 0E</td>
<td>Modernized build and test infrastructure for control software at ESO: highly flexible building, testing, and automatic quality practices for telescope control software [9913-14]</td>
</tr>
<tr>
<td>SESSION 4</td>
<td>DATA MANAGEMENT AND ARCHIVES I</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>9913 0F</td>
<td>High-contrast imaging in the cloud with klipReduce and Findr [9913-134]</td>
</tr>
<tr>
<td>9913 0G</td>
<td>Investigating interoperability of the LSST data management software stack with Astropy [9913-16]</td>
</tr>
<tr>
<td>9913 0H</td>
<td>VIALACTEA knowledge base homogenizing access to Milky Way data [9913-17]</td>
</tr>
<tr>
<td>9913 0I</td>
<td>A case study in adaptable and reusable infrastructure at the Keck Observatory Archive: VO interfaces, moving targets, and more [9913-18]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>CYBERINFRASTRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 0K</td>
<td>A cyber infrastructure for the SKA Telescope Manager [9913-20]</td>
</tr>
<tr>
<td>9913 0L</td>
<td>The NOAO data lab: science-driven development [9913-128]</td>
</tr>
<tr>
<td>9913 0M</td>
<td>The AST3 controlling and operating software suite for automatic sky survey [9913-22]</td>
</tr>
<tr>
<td>9913 0N</td>
<td>TMT common software update [9913-23]</td>
</tr>
<tr>
<td>9913 0O</td>
<td>DDS as middleware of the Southern African Large Telescope control system [9913-24]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>INSTRUMENTATION CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 0P</td>
<td>The DESI instrument control system [9913-25]</td>
</tr>
<tr>
<td>9913 0Q</td>
<td>Efficient receiver tuning using differential evolution strategies [9913-26]</td>
</tr>
<tr>
<td>9913 0R</td>
<td>The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments [9913-27]</td>
</tr>
<tr>
<td>9913 0S</td>
<td>World coordinate information for the Daniel K. Inouye Solar Telescope [9913-28]</td>
</tr>
<tr>
<td>9913 0T</td>
<td>The Infrared Imaging Spectrograph (IRIS) for TMT: motion planning with collision avoidance for the on-instrument wavefront sensors [9913-29]</td>
</tr>
<tr>
<td>9913 0U</td>
<td>AAO Starbugs: software control and associated algorithms [9913-30]</td>
</tr>
<tr>
<td>9913 0V</td>
<td>Collision-free coordination of fiber positioners in multi-object spectrographs [9913-31]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>UI/WEB TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913 0W</td>
<td>Exploratory visualization of astronomical data on ultra-high-resolution wall displays (Invited Paper) [9913-32]</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array [9913-33]</td>
</tr>
<tr>
<td></td>
<td>Firefly: embracing future web technologies [9913-34]</td>
</tr>
<tr>
<td></td>
<td>Observation management challenges of the Square Kilometre Array [9913-35]</td>
</tr>
<tr>
<td></td>
<td>SESSION 8 PROJECT OVERVIEWS AND PROGRESS II</td>
</tr>
<tr>
<td>10</td>
<td>Status report of the SRT radiotelescope control software: the DISCOS project [9913-36]</td>
</tr>
<tr>
<td>11</td>
<td>Status report of the end-to-end ASKAP software system: towards early science operations [9913-37]</td>
</tr>
<tr>
<td>12</td>
<td>MAISIE: a multipurpose astronomical instrument simulator environment [9913-38]</td>
</tr>
<tr>
<td>13</td>
<td>ACS from development to operations [9913-39]</td>
</tr>
<tr>
<td>14</td>
<td>The ESO astronomical site monitor upgrade [9913-40]</td>
</tr>
<tr>
<td>9</td>
<td>SESSION 9 DATA PROCESSING AND PIPELINES I</td>
</tr>
<tr>
<td>15</td>
<td>ASTRI SST-2M prototype and mini-array data reconstruction and scientific analysis software in the framework of the Cherenkov Telescope Array [9913-41]</td>
</tr>
<tr>
<td>16</td>
<td>Implementing a real-time data stream for time-series stellar photometry [9913-42]</td>
</tr>
<tr>
<td>17</td>
<td>Automated spectral reduction pipelines [9913-43]</td>
</tr>
<tr>
<td>18</td>
<td>StarDock: shipping customized computing environments to the data [9913-44]</td>
</tr>
<tr>
<td>10</td>
<td>SESSION 10 PROJECT MANAGEMENT</td>
</tr>
<tr>
<td>19</td>
<td>TMT approach to observatory software development process (Invited Paper) [9913-45]</td>
</tr>
<tr>
<td>1A</td>
<td>Don't get taken by surprise: planning for software obsolescence management at the ALMA Observatory [9913-46]</td>
</tr>
<tr>
<td>1B</td>
<td>Management of the science ground segment for the Euclid mission [9913-47]</td>
</tr>
<tr>
<td>1D</td>
<td>Building a world-wide open source community around a software framework: progress, dos, and don'ts [9913-49]</td>
</tr>
</tbody>
</table>
Part Two

SESSION 11 DATA MANAGEMENT AND ARCHIVES II

9913 1E The new Gemini Observatory archive: a fast and low cost observatory data archive running in the cloud [9913-50]
9913 1F Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST data center [9913-51]
9913 1G Cloud services on an astronomy data center [9913-119]
9913 1H Trident: scalable compute archives: workflows, visualization, and analysis [9913-53]
9913 1I The NOAO Data Lab virtual storage system [9913-54]

SESSION 12 TELESCOPE CONTROL II

9913 1J Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array [9913-55]
9913 1K Automation and control of the MMT thermal system [9913-56]
9913 1L Software architecture of INO340 telescope control system [9913-57]
9913 1M Introduction to FAST central control system [9913-58]
9913 1N Prototyping the E-ELT M1 local control system communication infrastructure [9913-59]
9913 1O A new telescope control software for the Mayall 4-meter telescope [9913-60]

SESSION 13 SOFTWARE ENGINEERING

9913 1P Revisiting software specification and design for large astronomy projects (Invited Paper) [9913-61]
9913 1Q Software requirements flow-down and preliminary software design for the G-CLEF spectrograph [9913-62]
9913 1R Software framework for automatic learning of telescope operation [9913-63]
9913 1S Can your software engineer program your PLC? [9913-64]

SESSION 14 DATA PROCESSING AND PIPELINES II

9913 1T Integrated data analysis in the age of precision spectroscopy: the ESPRESSO case [9913-66]
RabbitQR: fast and flexible big data processing at LSST data rates using existing, shared-use hardware [9913-67]

GAVIP: a platform for Gaia data analysis [9913-68]

POSTER SESSION: CYBERINFRASTRUCTURE, HIGH-PERFORMANCE AND PARALLEL COMPUTING, BIG DATA

Is the work flow model a suitable candidate for an observatory supervisory control infrastructure? [9913-21]

WAS: the data archive for the WEAVE spectrograph [9913-71]

The very high energy source catalog at the ASI Science Data Center [9913-76]

Telemetry correlation and visualization at the Large Binocular Telescope Observatory [9913-79]

The ALMA high speed optical communication link is here: an essential component for reliable present and future operations [9913-83]

Operational logs analysis at ALMA observatory based on ELK stack [9913-95]

The Open Microscopy Environment: open image informatics for the biological sciences [9913-99]

Advanced GLS map-making for the Herschel’s photometers [9913-107]

Data reduction software for the Mid-Infrared E-ELT Imager and Spectrograph (METIS) for the European Extremely Large Telescope (E-ELT) [9913-110]

A distributed infrastructure for publishing VO services: an implementation [9913-116]

The HARPS-N archive through a Cassandra, NoSQL database suite? [9913-125]

Virtualizing observation computing infrastructure at Subaru Telescope [9913-131]

Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array [9913-137]

Radio data archiving system [9913-182]

POSTER SESSION: OBSERVATORY, TELESCOPE AND INSTRUMENTATION CONTROL

Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array [9913-70]

Automatization of the guiding process in the GTC [9913-74]

Wendelstein Observatory control software [9913-78]
<p>| 9913 2H | Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT [9913-82] |
| 9913 2I | The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array [9913-86] |
| 9913 2J | Challenges and strategies for the maintenance of the SKA Telescope Manager [9913-90] |
| 9913 2K | The technical CCDs in ESPRESSO: usage, performances, and network requirements [9913-94] |
| 9913 2L | The SKA observation control system [9913-98] |
| 9913 2M | Rejecting harmonic vibrations at Gemini with real-time vibration tracking [9913-102] |
| 9913 2O | LSST OCS status and plans [9913-112] |
| 9913 2P | Target allocation and prioritized motion planning for MIRADAS probe arms [9913-115] |
| 9913 2Q | GHOST and GIAPI: experience using Gemini's new instrument control system framework [9913-118] |
| 9913 2R | Using muon rings for the optical calibration of the ASTRI telescopes for the Cherenkov Telescope Array [9913-121] |
| 9913 2T | INO340 telescope mount control system analysis and design [9913-127] |
| 9913 2U | Status, upgrades, and advances of RTS2: the open source astronomical observatory manager [9913-130] |
| 9913 2V | Using Robotic Operating System (ROS) to control autonomous observatories [9913-133] |
| 9913 2W | On-board target acquisition for CHEOPS [9913-136] |
| 9913 2X | Towards integrated modelling: full image simulations for WEAVE [9913-139] |
| 9913 2Z | SKA CSP controls: technological challenges [9913-141] |
| 9913 30 | Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope [9913-143] |
| 9913 31 | The Cherenkov Telescope Array Observatory: top level use cases [9913-144] |
| 9913 32 | Remote operations at UKIRT, Cassegrain included, 2 years later [9913-145] |
| 9913 33 | Agile development approach for the observatory control software of the DAG 4m telescope [9913-147] |
| 9913 34 | The CARMENES instrument control software suite [9913-149] |
| 9913 35 | Target-based fiber assignment for large survey spectrographs [9913-151] |</p>
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9913-36</td>
<td>The 4MOST facility control software</td>
<td>36</td>
</tr>
<tr>
<td>9913-37</td>
<td>Modified deformable mirror stroke minimization control for direct imaging of exoplanets</td>
<td>37</td>
</tr>
<tr>
<td>9913-38</td>
<td>The instrument control software package for the Habitable-Zone Planet Finder spectrometer</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Part Three</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POSTER SESSION: PROJECT OVERVIEWS AND PROGRESS REPORTS</td>
<td></td>
</tr>
<tr>
<td>9913-39</td>
<td>Development of a real-time data processing system for a prototype of the Tomo-e Gozen wide field CMOS camera</td>
<td>39</td>
</tr>
<tr>
<td>9913-3A</td>
<td>A reorganization cyberinfrastructure of history observing data in China</td>
<td>3A</td>
</tr>
<tr>
<td>9913-3B</td>
<td>The survey operation software system development for Prime Focus Spectrograph (PFS) on Subaru Telescope</td>
<td>3B</td>
</tr>
<tr>
<td>9913-3C</td>
<td>Status of the array control and data acquisition system for the Cherenkov Telescope Array</td>
<td>3C</td>
</tr>
<tr>
<td>9913-3E</td>
<td>The TESS science processing operations center</td>
<td>3E</td>
</tr>
<tr>
<td></td>
<td>POSTER SESSION: SOFTWARE ENGINEERING, DESIGN, AND IMPLEMENTATION</td>
<td></td>
</tr>
<tr>
<td>9913-3G</td>
<td>Software design of the ASTRI camera server proposed for the Cherenkov Telescope Array</td>
<td>3G</td>
</tr>
<tr>
<td>9913-3I</td>
<td>SINBAD flight software, the on-board software of NOMAD in ExoMars 2016</td>
<td>3I</td>
</tr>
<tr>
<td>9913-3J</td>
<td>Porting the ALMA Correlator Data Processor from hard real-time to plain Linux</td>
<td>3J</td>
</tr>
<tr>
<td>9913-3K</td>
<td>Implementing the concurrent operation of sub-arrays in the ALMA correlator</td>
<td>3K</td>
</tr>
<tr>
<td>9913-3L</td>
<td>The ASTRI mini-array software system (MASS) implementation: a proposal for the Cherenkov Telescope Array</td>
<td>3L</td>
</tr>
<tr>
<td>9913-3M</td>
<td>Concept study of an observation preparation tool for MICADO</td>
<td>3M</td>
</tr>
<tr>
<td>9913-3O</td>
<td>A new generation of spectral extraction and analysis package for Fiber Optics Cassegrain Echelle Spectrograph (FOCES)</td>
<td>3O</td>
</tr>
<tr>
<td>9913-3P</td>
<td>Monitoring service for the Gran Telescopio Canarias control system</td>
<td>3P</td>
</tr>
<tr>
<td>9913-3Q</td>
<td>ESPRESSO front end guiding algorithms: from design phase to implementation and validation toward the commissioning</td>
<td>3Q</td>
</tr>
</tbody>
</table>
EELT-HIRES the high resolution spectrograph for the E-ELT: software and hardware solutions for its control [9913-114]

Monitoring and controlling the SKA telescope manager: a peculiar LMC system in the framework of the SKA LMCs [9913-117]

The software architecture of the camera for the ASTRI SST-2M prototype for the Cherenkov Telescope Array [9913-120]

INO340 telescope control system: middleware requirements, design, and evaluation [9913-129]

ASTRI SST-2M data reduction and reconstruction software on low-power and parallel architectures [9913-132]

Towards a dynamical scheduler for ALMA: a science - software collaboration [9913-135]

Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array [9913-138]

A real-time prediction system for solar weather based on magnetic nonpotentiality (I) [9913-146]

Software use cases to elicit the software requirements analysis within the ASTRI project [9913-148]

M-and-C Domain Map Maker: an environment complimenting MDE with M-and-C knowledge and ensuring solution completeness [9913-150]

The RTE inversion on FPGA aboard the solar orbiter PHI instrument [9913-152]

Knowledge-based engineering of a PLC controlled telescope [9913-154]

Aided generation of search interfaces to astronomical archives [9913-157]

A control system framework for the Hobby-Eberly telescope [9913-160]

A user interface framework for the Square Kilometre Array: concepts and responsibilities [9913-162]

Queue software reuse and implementation at the Large Binocular Telescope Observatory [9913-164]

The Infrared Imaging Spectrograph (IRIS) for TMT: data reduction system [9913-165]

Key software architecture decisions for the automated planet finder [9913-167]

AVU/BAM: software refurbishment (design and implementation) for the CU3 Gaia verification pipeline [9913-168]

ImageX: new and improved image explorer for astronomical images and beyond [9913-169]
9913 4F	The ExoMars DREAMS scientific data archive [9913-170]
9913 4G	Image processing improvement for optical observations of space debris with the TAROT telescopes [9913-171]
9913 4J	Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture [9913-174]
9913 4K	FRIDA’s mechanisms control system structure and tests [9913-175]
9913 4L	A virtual appliance as proxy pipeline for the Solar Orbiter/Metis coronagraph [9913-176]
9913 4M	The ALMA Snooping Project Interface (SnooPI) [9913-177]
9913 4N	Observatory software for the Maunakea Spectroscopic Explorer [9913-178]
9913 4O	Synchronization of off-centered dome and 3.6m Devasthal Optical Telescope [9913-179]
9913 4P	A novel approach to visual rendering of astro-photographs [9913-180]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abareshi, Behzad, 1O
Aboudan, A., 4F
Abrams, Don Carlos, 1X, 2X
Abri, M., 34
Alberti, Valentina, 47
Aliverti, M., 3Q
Allan, Chris, 24
Allen, S. L., 4C
Altieri, Bruno, 26
Álvarez, C., 2F
Amado, P. J., 34
Amesiska, Rodrigo, 3J, 3K
Anderson, Tyler, 38
Andolfato, L., 1N
Andretta, V., 4L
Antognini, Jonathan, 1D
Antolini, Elisa, 1J, 3L, 3X, 40
Antonelli, Lucio Angelo, 15, 1Y, 3L, 3V
Antonino, P. Oliveira, 03
Antonucci, E., 4L
Aoki, Tsutomu, 39
Aparicio-del-Moral, Beatriz, 3I, 42
Apestigue-Palacio, V., 4F
Appert, Caroline, 0W
Araya, Mauricio, 1D
Argomedo, J., 1N
Arimatsu, Ko, 39
Arruego-Rodríguez, L., 4F
Artigues, Gabriel, 2V
Astier, Joseph, 49
Astudillo, A., 20
Avarias, Jorge, 1D, 3W
Baccani, C., 4L
Bacigalupo, Carlos, 0U
Baffa, C., 2Z
Bagaglia, Marco, 1J
Bagano, Cy, 2M
Balaguer, M., 42
Baldis, M., 2H, 2K, 3R
Balzer, Arnim, 3C
Bandieramonte, Marilena, 0H
Banerjee, Amar, 4I
Barbosa, Domingos, 02, 0K
Bamsley, Robert M., 17
Baraca, João Paulo, 02, 0K
Barriga, F., 1N
Bartolino, M., 0B, 10
Bastieri, Denis, 15, 3V
Beaufere, L., 0P
Becciani, Ugo, 0H
Bedo, F., 2D
Belliassai, G., 2C
Bender, Chad F., 38
Bender, Ralf, 3O
Benitez, D., 34
Ben, Chris, 2X
Berge, David, 3C
Berkenbosch, Sophie, 3I
Berriman, G. Bruce, 0l
Berthold, Ryan M., 32
Berukoff, Steven, 1F, 1P
Besson, Sébastien, 24
Bettanini, C., 4F
Bhatia, Ravinder, 19
Biddick, Christopher, 1Z
Bierwirth, Thomas, 14
Bignamini, Andrea, 44
Bongiart, Ciro, 31, 3L
Blackburn, Colin, 24
Blanchet, G., 4G
Boër, M., 4G
Bogosavljevic, M., 16
Boisson, C., 31
Bolton, Adam S., 0L, 11
Bonanomi, C., 4P
Bonifacio, Piercarlo, 1X, 2X
Bonnet, Henri, 2M
Bonnevin, Sabrina, 31
Bonnoli, Giacomo, 40
Borkowski, Jerzy, 3C
Borrowman, Alastair J., 1S
Bosch, James, 0G
Bosnjak, Z., 3I
Bovill, Robert, 09
Boyer, Corinne, 4J
Brajnik, Giorgio, 47
Brandi, Bernhard R., 27
Brav-Nogué, S., 3I
Bracia, Massimo, 0H
Bridger, Alan, 02, 0Z, 2L
Brighton, Allan, 0N
Brink, Janus D., 0O
Brito, H., 2F
Broguier, Dominique, 0C
Brucalassi, Anna, 3O
Bruno, Pietro, 2C, 2I, 3L, 3X, 40
Bryant, Randy, 46
Lin, Jun, 3A
Lindemann, Rico, 3C
Lindfors, E., 31
Lindner, Dominik, 24
Linkert, Melissa, 24
Liu, Qinghui, 06
Liu, Scige J., 0H
Liu, Suo, 3A
Lodi, Marcello, 1X, 2A
Loeschl, P., 2W
Lombaard, Briehan, 0R
Lombardi, Saverio, 15, 31, 3L, 3V, 3X, 40
Loomis, Craig P., 3B
López Aguerri, José Alfonso, 1X, 2X
López Jiménez, A. C., 42
López-Moreno, José J., 3I
Lorente, Nuria P. F., 0U
Lotz, Paul J., 09
Lovis, Christophe, 1T
Lucarelli, Fabrizio, 15, 1Y, 31, 40
Lung, David, 3E
Lupton, Robert H., 0G, 3B
Luque-Escamilla, P., 31
Ly, L., 0Y
Lyard, Etienne, 03, 3C
Lyke, Jim, 05
Lynn, David, 1V
Lyons, Eric, 0F
Ma, Bin, 0M
Maartens, Duneys S., 00
Maccarone, Maria Concetta, 2E, 2R, 3L, 40
Mach, Michael, 27
Macías, Rosa, 2F, 3P
Mader, Jeffrey A., 05, 0I
Madonna, Alberto, 15, 3V
Maehara, Hiroyuki, 39
Maes, Jeroen, 3I
Mahadevan, Svathra, 38
Maia, Dalmiro, 0K
Maier, G., 31
Makaren, Loleh, 0V, 35
Malaguti, Giuseppe, 2C, 2I, 3G, 40
Males, Jared R., 0F
Mañas, Miguel M., 13
Mandel, Holger, 36
Manfrin, Cristiana, 1J
Mannetta, M., 4F
Mansouri-Samani, Masoud, 2E
Mansutti, Oriana, 1B
Marais, Neil, 0A
Marassi, Alessandro, 47
Marchetti, E., 4F
Marchiori, Gianpietro, 1J
Marconi, A., 3R
Maricuci, Enrico, 1J
Mardones, Diego, 1G
Marini, D. L. R., 4P
Marisaldi, M., 31
Markoff, S., 31
Marquarding, Malte, 11
Marshall, Daniel, 4A
Marshall, Robert, 1O
Marshall, Stuart, 09
Marson, Ralph, 04
Martí Ribas, J., 31
Martin, Adrian, 1X, 2A
Martinetti, E., 2C
Marty, L., 4F
Mason, Jon P., 3I
Mastrogiuseppe, Marco, 26
Mastropietro, Michele, 15, 2C, 3V
Masuda, Neal, 2M
Matsunaga, Noriyuki, 39
Mayer, Chris, 0S
McBreen, Sheila, 1V
McCann, Kevin, 05
McCauliff, Seán, 3E
Medhi, Biman Jyoti, 4Q
Mégevand, Denis, 1T, 2H, 2K, 3Q
Meldrum, David, 03, 3C
Merchant, Nirav, 0F
Messina, Marco, 0Z
Messineo, Rosario, 4D
Mi, W., 0Y
Middleton, Kevin F., 1X, 2X
Mighell, Kenneth J., 0L, 1I
Migori, C., 0B, 10
Miller, Joseph B., 1Q
Mills, David, 09, 2O
Mineo, Teresa, 2E, 2R
Mito, Hiroyuki, 39
Mitsuda, Kazuma, 39
Miyata, Takashi, 39
Mizumoto, Yoshihiko, 30
Molfese, C., 4F
Molgó, Jordi, 1R, 2F, 3P
Molinari, Emilio, 1X, 2A
Molinari, Sergio, 0H
Molinato, Marco, 0H, 2B, 44
Monson, Andrew, 38
Montmessin, F., 4F
Moore, Anna M., 0T, 4A
Moore, Josh, 24
Moore, Liz, 07
Moore, William J., 24
Mora, Matias, 1D
Morales-Muñoz, Rafael, 34, 3I
Morgan, Edward, 3E
Morgenstern, A., 03
Mori, Kiyoshi, 39
Mori, Yuki, 39
Mori, Mikio, 39
Moritani, Yuki, 38
Morokuma, Tomoki, 39
Morzinski, Katie M., 0F
Moschetti, M., 3Q
Motohara, Kentaro, 39
Mugnuolo, R., 4F
Mundell, C., 31
Muñoz, Roberto, 0W
Conference Committee

Symposium Chairs

Colin Cunningham, UK Astronomy Technology Centre (United Kingdom)
Masanori Iye, National Astronomical Observatory of Japan (Japan)

Symposium Co-chairs

Allison A. Barto, Ball Aerospace & Technologies Corporation (United States)
Suzanne K. Ramsay, European Southern Observatory (Germany)

Conference Chairs

Gianluca Chiozzi, European Southern Observatory (Germany)
Juan C. Guzman, Commonwealth Scientific and Industrial Research Organisation (Australia)

Conference Program Committee

Alan Bridger, UK Astronomy Technology Centre (United Kingdom)
Tom Donaldson, Space Telescope Science Institute (United States)
Jorge F. Ibsen, European Southern Observatory (Chile)
Kim K. Gillies, Thirty Meter Telescope Observatory Corporation (United States)
José M. Filgueira, GMTO Corporation (United States)
Bret Goodrich, National Solar Observatory (United States)
Shui Hung Kwok, W. M. Keck Observatory (United States)
Richard M. Prestage, National Radio Astronomy Observatory (United States)
David L. Terrett, RAL Space (United Kingdom)
Lize Van den Heever, SKA South Africa (South Africa)

Session Chairs

1 Project Overviews and Progress I

Gianluca Chiozzi, European Southern Observatory (Germany)
Richard M. Prestage, National Radio Astronomy Observatory (United States)
2 Telescope Control I
David L. Terrett, STFC Rutherford Appleton Laboratory (United Kingdom)
José M. Filgueira, GMTO Corporation (United States)

3 Software Quality and Testing
Alan Bridger, UK Astronomy Technology Centre (United Kingdom)
Jorge Ibsen, ALMA (Chile)

4 Data Management and Archives I
Juan Carlos Guzman, Commonwealth Scientific and Industrial Research Organisation (Australia)
Jorge Ibsen, ALMA (Chile)

5 Cyberinfrastructure
Gianluca Chiozzi, European Southern Observatory (Germany)
Jorge Ibsen, ALMA (Chile)

6 Instrumentation Control
David L. Terrett, STFC Rutherford Appleton Laboratory (United Kingdom)
Lize Van den Heever, SKA South Africa (South Africa)

7 UI/Web Technologies
Shui Hung Kwok, W. M. Keck Observatory (United States)
José M. Filgueira, GMTO Corporation (United States)

Lightning Talks
Alan Bridger, UK Astronomy Technology Centre (United Kingdom)
Shui Hung Kwok, W. M. Keck Observatory (United States)
Kim Gillies, Thirty Meter Telescope (United States)
Jorge Ibsen, ALMA (Chile)

8 Project Overviews and Progress II
Jorge Ibsen, ALMA (Chile)
Richard M. Prestage, National Radio Astronomy Observatory (United States)

9 Data Processing and Pipelines I
Kim Gillies, Thirty Meter Telescope (United States)
Juan Carlos Guzman, Commonwealth Scientific and Industrial Research Organisation (Australia)
10 Project Management
Bret D. Goodrich, National Solar Observatory (United States)
Richard M. Prestage, National Radio Astronomy Observatory (United States)

11 Data Management and Archives II
Kim Gillies, Thirty Meter Telescope (United States)
Bret D. Goodrich, National Solar Observatory (United States)

12 Telescope Control II
Shui Hung Kwok, W. M. Keck Observatory (United States)
Lize Van den Heever, SKA South Africa (South Africa)

13 Software Engineering
José M. Filgueira, GMTO Corporation (United States)
David L. Terrett, STFC Rutherford Appleton Laboratory (United Kingdom)

14 Data Processing and Pipelines II
Alan Bridger, UK Astronomy Technology Centre (United Kingdom)
Shui Hung Kwok, W. M. Keck Observatory (United States)

Conclusion
Juan Carlos Guzman, Commonwealth Scientific and Industrial Research Organisation (Australia)
Gianluca Chiozzi, European Southern Observatory (Germany)