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Quantum dot lasers and relevant nanoheterostructures 
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eUniversity of Notre Dame, 275 Fitzpatrick Hall, Notre Dame, IN 46556, USA 

ABSTRACT 

Spectral and power characteristics of QD stripe lasers operating in two-state lasing regime have been studied in a wide 
range of operation conditions. It was demonstrated that neither self-heating nor increase of the homogeneous broadening 
are responsible for quenching of the ground-state lasing beyond the two-state lasing threshold. It was found that 
difference in electron and hole capture rates strongly affects light-current curve. Modulation p-type doping is shown to 
enhance the peak power of GS lasing transition. Microring and microdisk structures (D = 4–9 μm) comprising 1.3 μm 
InAs/InGaAs quantum dots have been fabricated and studied by µ-PL and NSOM. Ground-state lasing was achieved 
well above root temperature (up to 380 K). Effect of inner diameter on threshold characteristics was evaluated.  

Keywords: Quantum dots, semiconductor laser, microring resonator, two-state lasing 
 

1. INTRODUCTION  
For various applications, including optical data transmission, pumping of Raman amplifiers, aesthetic laser surgery, etc, 
efficient lasers operating around 1.3 μm are requested. Lasers based on self-organized InAs/InGaAs quantum dots (QDs) 
offer an attractive combination of the required wavelength with extremely low threshold current density and high 
characteristic temperature. However, at sufficiently high currents a shorter-wavelength (λ ~ 1.2μm) band caused by the 
first excited-state (ES1) transition appears in the spectrum1. Such a behavior is now referred to as two-state lasing. For a 
majority of applications two-state lasing has to be suppressed whereas the GS spectral component of the lasing spectrum 
has to be maximized. Analysis of QD laser behavior based on rate2 and master3 equations predicts that optical power of 
the GS component reaches its maximal value at threshold of the two-state lasing and then persists. However a number of 
experimental facts revealed that the GS component declines down to its complete quenching4,5 due probably to laser self-
heating in CW regime4 and/or increase of homogeneous broadening5 have been proposed. To clarify possible reasons of 
the GS lasing quenching we studied spectral and light-current characteristics of broad-area QD lasers. 

Microdisks and microrings optical resonators comprising a III-V active region are promising candidates for light emitters 
to be integrated with silicon photonic circuits. Owing to a combination of a compact size and a high Q-factor, which can 
be achieved in such structures, ultralow threshold operation is expected. Although the majority of whispering gallery 
mode (WGM) resonators has been contained quantum-well active region composed of InP-based materials6, QDs may 
have certain advantages. These include attainability of 1.3 μm emission in GaAs-based structures with high refractive 
index contrast, low temperature sensitivity, suppressed sidewall recombination rates7, making it possible to achieve 
lasing in resonators of small diameter. Since the first report8 on QD microdisk laser capable of operating at 77K, 
significant progress has been made toward high-temperature lasing. In particular, room-temperature lasing has been 
reported to date for microdisks of few microns in diameter9, whereas for relatively large microrings (35-85 μm) lasing 
has been recently extended up to 50oC10. In the present work we demonstrate ground-state lasing up to 107oC for 
optically pumped microring lasers (MRLs) having an outer diameter as small as 6-7 μm.  
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2. TWO-STATE LASING AND ITS SUPPRESSION IN QD LASERS 
2.1 Quenching of GS spectral component 

Epitaxial structures comprising a single plane or multiple planes of InAs/InGaAs QDs were grown by molecular beam 
epitaxy. Stripe lasers of various cavity lengths were tested in pulse regime (300ns @ 2 kHz) on temperature-stabilized 
heatsink. An evolution of the lasing spectrum with increasing the pump current is shown in Figure 1,a for a 4-mm-long 
single-QD-plane laser at 17oC. The corresponding light-current characteristics (total output power and optical power of 
GS and ES1 spectral components of the spectrum) are presented in Figure 1,b. The ES1 band (around 1.18 μm) appears 
in the spectrum at approximately 3 A whereas the GS component reaches its maximum at 5A, well beyond the onset of 
two-state lasing. A complete quenching of the GS lasing is observed at 12 A.  

 

 
Figure 1. Lasing spectra at different currents (a); laser power (b): dashed-dotted curve – total (GS+ES1), solid curve – 
ground-state component (GS), dashed curve – first excited-state component (ES1).  

 

As it is seen in Figure 1,a the GS band is split into two peaks (~1.254 and ~1.262 nm). According to M. Sugawara et al5 
this splitting can be attributed to the homogenous broadening of the QD optical transition. They also suggested that the 
GS lasing quenching at high currents could be explained by increase of the homogenous broadening. In spite of this we 
found that the splitting is practically unchanged (6.5 ± 0.4 meV) as current increases up to 12 A. Therefore, the 
quenching can not be associated with the aforementioned reason. Moreover, spectral positions of the both GS peaks also 
remain very stable so that the current-induced red shift is only 0.4 nm. Such a shift corresponds to a negligible 
temperature increment of about 1oC which can not itself lead to suppression of the GS lasing because in this particular 
laser diode the GS lasing at low currents can be observed up to 68oC. Thus, the GS lasing quenching at high currents can 
not be attributed to self-heating of the active region as well. 
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2.2 Effect of difference in electron and hole relaxation rates 

More sophisticated model that does not imply either the homogeneous broadening or self-heating effect is based on 
assumption of the asymmetry in charge carrier distribution in a QD11. Energy separation of ground- and excited-state 
energy levels of holes is much smaller than kT that leads to a nearly equal probability of occupation of the hole levels. As 
a result, there is a competition for the “joint holes” between electrons of the ground-state and the excited-state levels. 
Because the ES1 electron level has a higher degeneracy as compared to the GS level, in the regime of two-state lasing 
the holes are effectively swept out from QDs because of their recombination with ES1 electrons. In its turn this leads to 
the quenching of the GS lasing as the pump current grows.  

 

 

 
Figure 2. L-I curves for ground-state component (a): circles – experiment; lines – calculation for different ratio of hole-to-
electron relaxation rates (h). Operation diagram of QD laser: heavy lines separates regions of different lasing regimes (NL – 
no lasing, GS – pure ground-state lasing, GS+ES1 – two-state lasing, ES1 – pure excited-state lasing); thin lines correspond 
to different h values. 

 

However, we found that the observed experimental data can not be quantitatively described if one takes into account 
only the above-mentioned asymmetry. Reasonable agreement between modeling results and experiment was achieved 
under assumption that electron and hole relaxation rates into QDs are different. More precisely, we assumed that the hole 
capture is slower than the electron one which makes the competition for holes more pronounced and leads to complete 
quenching of the GS lasing at lower pumps. Figure 2,a shows the calculated evolution of the GS power with the pump 
current. The results are shown for different ratio of the hole-to-electron relaxation rates h which is assumed to be 
independent of the injection rate. The best agreement of the model results with the experiment is found for h = 0.75. 
Lower rate of the hole relaxation is probably associated with their slower velocity in the matrix/wetting layer. Using the 
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extracted value of h we can also reproduce fairly well temperature dependences of the two-state lasing threshold and the 
current of the GS-lasing quenching.  

Using the proposed model we are capable of calculating the operation diagram of QD laser as shown in Figure 2,b. The 
diagram depicts different regimes of the laser operation as a function of electron (geC) and hole (ghC) capture rates: 
subthreshold regime of no lasing (NL), regime of lasing via GS optical transition (GS), two-state lasing regime 
(GS+ES1), regime of lasing via ES1 transition only (ES1). Depending on the ratio of hole-to-electron relaxation rates 
(h = ghC/geC) and the total optical loss various scenarios of laser behavior can be realized. In particular, in case of 
sufficiently fast hole capture (h = 1 in Figure 2,b) the two-state lasing can persist so that the GS lasing peak is not 
completely suppressed even at very high injection levels.  

2.3 Effect of p-type doping 

Modulation p-type doping of QDs may noticeably improve temperature stability of the threshold current12. We found 
that p-doping affects the two-state lasing behavior as well. Temperature dependences of the two-state lasing threshold 
current as well as the ground-state lasing threshold current are presented in Figure 3 for two 0.6-mm-long diodes of 
similar design (10 planes of InAs/InGaAs QDs): one with undoped active region and another with modulation doping 
(~10 acceptors per QD). The GS-lasing thresholds measured at room temperature are nearly equal in both structures 
(~0.35 A). At the same time, the onset of the two-state lasing is significantly shifted to higher currents in the p-type 
doped laser (~5.5 A) as compared to its undoped analogue (~1.1 A). Light-current curve (insert of Figure 3) 
demonstrates that the maximum optical power of the GS spectral component reaches 3.6 W in the laser with p-type 
doping, while it is about 2.4 W in the undoped counterpart. Another finding is that the temperature interval, where GS 
lasing can be achieved, extends to higher temperatures in the p-doped structure (from 55 to 100oC).  

 
Figure 3. Threshold vs temperature for ground-state lasing (solid symbols) and two-state lasing (open symbols) in lasers 
with undoped (circles) and p-type doped (squares) QDs. Insert: power of the GS-line vs current. 

 

2.4 Comparison of lasing and spontaneous emission spectra 

Spontaneous emission spectra may provide additional information on peculiarities of the two-state lasing. We studied 
QD lasers having 4 cleaved facets where both lasing and spontaneous emission can be simultaneously detected as shown 
in Figure 4. At least five peaks of different origin are easily resolved: two narrow peaks of lasing emission via ground-
state (1264.3 nm) and first excited-state (1179.8 nm) transitions and three broad peaks of spontaneous emission via 
ground-state (1264.0 nm), first excited (1172.0 nm) and second excited-state (1108.4 nm) transitions. The characteristic 
feature is that the GS lasing peak nearly coincides with the peak position of GS spontaneous emission. This implies that 
the GS lasing arises from QDs of the most probable (mean) size. At the same time ES1 lasing peak is noticeably red-
shifted with respect to the peak position of ES1 spontaneous emission indicating that QDs, which size is larger than the 
mean one, are chiefly responsible for the ES lasing. Similar behavior was observed in a wide interval of current density. 
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Figure 4. Emission spectrum: squares – experiment, solid curves – lasing emission, dotted curves – spontaneous emission. 
Insert: peak position vs current density: solid circles – GS lasing, open circles – ES1 lasing, solid curve – GS spontaneous 
emission, dotted curve – ES1 spontaneous emission. 

 

3. MICRORING STRUCTURES 
3.1 Experiment 

An epitaxial structure was grown by molecular beam epitaxy on semi-insulating GaAs(100) substrate. An active region 
comprises five layers of InAs/In0.15Ga0.85As QDs separated by 30-nm-thick GaAs spacers. The active region was inserted 
into a 220-nm-thick GaAs waveguiding layer confined by 20-nm-thick Al0.3Ga0.7As barriers. A 400-nm-thick 
Al0.98Ga0.02As cladding layer was grown beneath the waveguiding layer. Microrings were defined by photolithography 
and Ar+-etching. The outer diameter was varied in different structures from D = 4 to 9 μm. The inner diameter ranges 
from d = 0 (microdisks) to d ≈ 0.8D. Finally, the cladding layer was selectively oxidized into (AlGa)xOy. Typical 
microphotograph of the resonator structure is shown in Figure 5. 

 
Figure 5. SEM image of QD microring laser (D =6 μm, d = 2 μm). 

 

For optical experiments a CW-operating YAG:Nd laser (λ = 532nm) was used together with a cooled Ge pin-diode. 
Measurements at elevated temperatures were performed with the structures mounted onto a heated holder equipped with 
a temperature controller. Low temperature measurements were done in a flow cryostat.  
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3.2 Low-temperature measurements 

An example of luminescence spectrum taken at 77 K from 6µm-ring with 2µm inner diameter is shown in Figure 6. Four 
series of whispering gallery modes of different radial order are clearly observed. All modes presented in the optical 
spectrum were identified by means of 2D‐axisymmetric analysis. The dominant modes are of n = 2 and 3 order. 
Significant overlap of many modes exists (e.g. around 1190.8 nm where 3 modes are close together).  

 
Figure 6. Low-temperature luminescence spectrum of the microring. Estimated mode orders TEm,n are indicated near the 
peaks. 

 

3.3 Near-field scanning optical microscopy. 

Spatial distribution of light intensity inside the microresonators was studied by means of near-field scanning optical 
microscopy (NSOM). Several typical NSOM images are presented in Figure 7. Characteristic WGM patterns are clearly 
seen. Depending on spectral position of the luminescence peaks, NSOM images reveal modes of different radial and 
azimuthal order. 

λ = 1279.8 nm, TE1,32 λ = 1291.3 nm, TE2,29 

  

Figure 7. NSOM images demonstrating WGM modes of different orders in the microring resonator. 

 

3.4 Room-temperature measurements. 

A representative room-temperature µ-PL spectrum taken under low excitation is shown in the left insert of Figure 8. Full 
width at half maximum for resonant peaks varies from 0.143 to 0.234 nm giving the quality factor of about 9000. 

The threshold power for the microring/microdisk structures was estimated from a light-light curve of the dominant mode. 
An example is presented in Figure 8 where a characteristic knee is clearly seen. In this particular case (D = 7 µm, 
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d = 3.4 µm) the threshold power is 0.37 mW. No correction was made to take into account partial light reflection from 
the surface or waste of the excitation power in the inner area of microring structures. Overall the threshold power at 
room temperature in different structures ranges from few tenths of mW to few mW. From one to three modes were 
usually observed in room-temperature lasing spectra (see right insert of Figure 8). 

 
Figure 8. Intensity of the dominant mode against excitation power (symbols). Curve is a guide to the eye. Insert: 
luminescence spectrum below threshold (left) and above threshold (right). 

 

Room-temperature threshold characteristics of the microstructures with different inner diameters were compared. In most 
cases the threshold power (absolute value) decreases by approximately 30-40% as the inner diameter increases from 0 
(disk) to 0.3-0.6 D, see Figure 9. Further ring thinning results in rapid growth of the threshold. As for the effect of the 
outer diameter, the lowest threshold of 0.37-0.4 mW was found in microrings having an outer diameter of 6–7 µm. Both 
larger and smaller microrings demonstrate higher threshold power as shown in the insert of Figure 9. 

 
 

Figure 9. Room-temperature threshold (normalized to the threshold of the microdisk structure) as a function of inner 
diameter. Insert: the lowest threshold against the outer diameter. 

 

3.5 High-temperature measurements 

Threshold power increases super-exponentially with temperature. Around room temperature the characteristic 
temperature was estimated to be ~60–75 K. In most cases, lasing can be observed up to 80–90oC whereas the highest 
temperature of lasing was found to be as high as 107oC, Figure 10. To the best of our knowledge this is the highest 
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temperature ever reported for 1.3μm QD MRLs. Below room temperature the threshold is nearly unchanged or even 
slightly increases. Temperature variation of the lasing wavelength is summarized in Figure 10. Spectral position of the 
ground-state optical transition of quantum-dot luminescence is also shown for comparison. It is seen that the lasing 
wavelength is quite stable (~0.05 nm/K) within relatively wide temperature intervals (e.g. from 20 to 40oC and then from 
50 to 90oC) where a certain WGM mode remains the dominant one. Abrupt changes of the lasing wavelength (e.g. 
around 40-50 oC) are due to hopping of the dominant mode.  

 
Figure 10. Temperature dependences of the threshold power (solid symbols) and wavelengths of the dominant mode (open 
symbols). QD ground-state optical transition against temperature (dashed curve) is also shown. Solid curve is exponential fit 
with T0=65 K. 

 

4. CONCLUSIONS 
Quantum dot lasing structures of two sorts both emitting around 1.3 µm were studied: broad-area diode lasers and 
optically pumped microresonators.  

Broad-area lasers were used for detailed investigation of the two-state lasing phenomenon and, in particular, quenching 
of the ground-state lasing emission that observed at high currents. It was demonstrated that the most probable reason for 
the GS lasing quenching is asymmetry of electrons and holes carrier distributions. Additionally, difference in capture 
rates of electrons and holes has to be taken into consideration. We also found that the GS-component reaches its 
maximum beyond the threshold of the two-state lasing and that different groups of QDs are responsible for GS- and ES1-
lasing in the two-state lasing regime. Finally, we demonstrated that p-type modulation doping of QDs leads to noticeable 
suppression of the ES1-lasing thereby resulting in enhancement of peak power of the GS spectral component.  

Microrings and microdisks of few micrometers in diameter were made by ion etching and selective oxidation with Q-
factor of about 9000. Whispering gallery modes of second and third radial orders dominate the luminescence spectrum. 
Nearly single-mode lasing was observed at elevated temperatures. The lowest threshold (around 0.4 mW at RT) was 
found in microdisks of intermediate diameter (6-7 µm) with approximately 50% inner aperture. The highest temperature 
was found to be 107oC and the threshold was in mW-range. 
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