
 

Nanosecond laser-induced damage of high-reflection 
coatings: NUV through NIR 

Zhanshan Wang 1,2,*, Hongping Ma1,2, Xinbin Cheng1,2, Jinlong Zhang1,2, Pengfei He1,2, Bin Ma1,2, 
Hongfei Jiao1,2, and Yongjian Tang3 

1Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, Shanghai, 
200092, China 

2Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji 
University, Shanghai, 200092, China 

3Research Center of Laser Fusion, Mianyang, Sichuan, 621900, China 
*Corresponding author: wangzs@tongji.edu.cn 

ABSTRACT  

Laser-induced damage of high reflection (HR) coatings, working at near ultraviolet (NUV) and near infrared (NIR) 
regions was investigated. For NIR HR coatings, the nodules still remain the most limiting defects. The E-field intensity 
(EFI) enhancement in nodules plays a central role for triggering laser-induced damage. We established a simple model 
for EFI enhancement in nodules using the focusing and light penetrating concept. With the help of finite-difference time 
domain (FDTD) simulations, we found that refractive indices and nodular geometries affected the focal length as well as 
the size of focal spots. Furthermore, the angular reflection bandwidth (ARB) of nodules determined the fraction of light 
that can penetrate to the focal region. For NUV HR coatings, we explored the increase of the laser-induced damage 
threshold (LIDT) by increasing the incident angle from 0 degrees to 65 degrees for S-polarization. The EFI in a 65 
degree HR coating is more than 4 times lower compared to 0 degree HR coatings, which suggests that the LIDT of 65 
degree HR coating is much higher compared to 0 degree HR coating. However, we found some contradictory results. For 
small testing laser beam size with a diameter of 20 μm, the LIDT of 65 degree HR coating is 3.5 times higher compared 
to a 0 degree HR coating. However, for a large sized testing laser beam with a diameter of 1000 μm, the LIDT of 65 
degree HR coating is 2 times lower compared to a 0 degree HR coating. Possible reasons for the observed damage 
phenomena are discussed. 
Keywords: high reflection coatings, defects, damage mechanisms 

1. INTRODUCTION 

Optical components play an important role in high power laser systems for applications such as laser fabrication, direct 
energy weapons, and inertial confinement fusion. The LIDT of optical components limits the output power of the laser 
system and poses a significant influence on its safe operation [1-4]. HR coatings are among the most important 
components that are used in high power laser systems. Researches have realized that laser damage of optical material is a 
multi-scale and multi-physics phenomenon with underlying fundamental science challenges, such as multi-photon 
absorption, dielectric breakdown, thermal mechanical damage, and plasma-matter coupling. Fundamental understanding 
and technology development have been achieved to improve the laser damage resistance of HR coatings [5-11]. 
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In the NIR region, HR coatings have wide applications in laser fusion systems; however, increasing the LIDT of these 
coatings remains an unsolved requirement. Three typical damage phenomena exist for NIR HR coatings: nodular 
damage, flat bottom pit, and delamination [12-14]. Flat bottom pits are created from nano-sized absorbers; however, the 
origin of these nano-sized absorbers is still only partially understood. Delamination are catastrophic damage events 
accompanied by plasma scald. Nodules are the most limiting defects; therefore, intensive studies have been carried out 
and multiple approaches have been proposed to deal with nodules [15-21]. The nodules have a parabolic shape that can 
result in electric field intensification. If the film or the seeds have absorption, strong temperature gradients and 
associated stress gradients would occur, thus potentially damaging the mechanically unstable nodules. Paying particular 
attention to the physical insight of the EFI enhancement in nodules, we detected a correction between the EFI 
distribution and the seed sizes; furthermore, the damage phenomenon is also correct with the EFI distributions [22]. 
However, the question how to reduce the EFI enhancement of nodules and thus increase the LIDT of HR coatings still 
remains. Consequently, further studies are necessary to increase our understanding of the physical mechanism of EFI 
enhancement in nodules. 
The laser damage resistance of NUV dielectric HR coatings still does not meet the requirement of a laser fusion facility. 
It has been widely accepted that nano-sized absorbers at the coating interface are the main factor absorbing laser energy 
and then triggering the initial damage of the coatings [23-26]. Moreover, the contribution of plasma scald to the laser 
damage remains poorly understood. Most studies focused on increasing LIDT either by reducing EFI at the interface or 
via improving interface quality [27-29]. However, these methods are technically challenging, and the possible increase of 
the LIDT of coatings is limited. Thus, improving the laser damage resistance of NUV HR coatings still remains an 
unsolved problem. Here we try to increase the LIDT of coatings by reducing the EFI via increasing the incident angle. 
This article is organized in the following way: section 2 presents our recent studies about the physical insight into EFI 
enhancement of nodules. Our method to increase the LIDT of HR coatings used in NUV is summarized in section 3. 
Then, the conclusion is presented in section 4. 

 2. STUDIES ON EFI ENHANCEMENT OF NODULES IN NIR HR COATINGS 

For classic nodules, the nodular diameter D is related to a constant C, to the seed diameter d, and to the seed depth t via 
the relation D = sqrt(Cdt). Numerous factors can affect EFI enhancement in nodules, e.g., coating properties, seed 
diameter, seed geometry, lodging depth of seeds, and nodular geometry. Our previous study about the EFI enhancement 
of D = sqrt(8dt) and D = sqrt(4dt) nodules showed that nodular geometry has a significant influence on EFI patterns and 
their enhancement [30]. This is mainly because the different nodular geometry induces different focal properties, and the 
different angular dependent transmission (ADT) induces different light penetration. The micro-lens model [31-33] and 
the ADT model [34] provided a basic explanation for the intensified EFI in nodules; however, a reasonable explanation 
on the physical mechanism of EFI enhancement in nodules remains absent. For the difference on EFI enhancement of D 
= sqrt(8dt) and D = sqrt(4dt) nodules, the influence of focusing effect and light penetration effect is mixed. Therefore, we 
had to utilize a single factor experiment to study focusing effect and light penetration effect, and thus to distinguish both 
and to arrive at a better understanding of EFI enhancement in nodules. 
2.1 The study of light focusing effect of nodules 

Our previous study [30] revealed that the focal length of nodules can be determined by  ݂ ∝ ଵଵିଵ ௡⁄   (1)                                      ݎ
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nodule in L-index single layer is much lower than the H-index single layer, which is due to improved ARB of the film. 
Then, for the EFI enhancement of nodule in omnidirectional HR coating, as show in Fig. 3(c), we found that no portion 
of light can penetrate through the omnidirectional HR coating to the focal position of the nodule. The maximum EFI is 
only approximately 3, which means the omnidirectional HR coating significantly reduced the EFI enhancement of 
nodules. From this example we learn that the portion of the incident light, penetrating through the coatings to the focal 
position plays a dominant role in determining the EFI enhancement at nodules. 

   

   (a)                         (b)                          (c) 

  
   (d)                         (e)                          (f) 

Figure 3. The D = sqrt(4dt) nodule in the omnidirectional HR coating. (a, b, and c) P-polarized and S-polarized ADT curves 

of the H-index single layer (a), L-index single layer (b), and omnidirectional HR coating (c). (d, e, and f) S-polarized EFI 

distribution at a nodule in H-index single layer (d), L-index single layer (e), and omnidirectional HR coating (f). 

Combining the results of these studies with the focusing effect and light penetration effect, reveals a strong EFI 
enhancement in nodules that can be created when the following two conditions are simultaneously met:  
(1) The focal point is within the nodule. 
(2) A certain portion of the laser beam can penetrate to the focal point region.  
This simplified picture provides a direction to reduce EFI enhancement either by changing focal length or reducing light 
penetration, or by changing these two effects combined. We have demonstrated an approach that uses a broadband HR 
design to reduce light penetration and to suppress EFI enhancement [30]. 

3. LASER-INDUCED DAMAGE OF NUV HR COATINGS 

3.1 The current understanding of laser damage of NUV HR coatings 

For NUV HR coatings, nodules are no longer the most limiting defects for catastrophic damage [36]. Studies reported 
that damage of the NUV coatings is always triggered by nano-sized absorbers [37, 38]; furthermore, it has been widely 
accepted that the HfO2 on the SiO2 interface is easy to damage primarily for HfO2 /SiO2 HR coatings. As show in Fig. 4, 
when strong EFI encounters nano-sized absorbers at coating interface, laser damage is initiated. Several approaches have 
been proposed to increase LIDT of HR coatings worked in the NUV region. Most studies focused on increasing LIDT 
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Table 1. LIDT of the 0 and 65 degree HR coatings when use small and large laser beam 

 
Max EFI at interface 

Normalized LIDT (1-on-1) 
Small beam size 

20 μm 
Large beam size 

1000 μm 

0°  HR coating 91% 1 1 

65° S-pol HR coating 20% 3.5 0.45 

To reveal the reason behind this abnormal dependence of LIDT on EFI for large laser beams, we utilized a comparison 
between the laser damage morphologies of these films under small and large laser beams. As show in Fig. 6, three 
properties about the damage morphology for 0 and 65 degree coatings become apparent when irradiated by small and 
large laser beams. Firstly, the damage size of the large laser beam is much larger compared to the small laser beam. 
Secondly, the damage area in 65 degree HR coatings is an ellipse and larger than the circular damage area in 0 degree 
HR coating. Thirdly, there are many small damage pits within the damaged area for films irradiated by a large laser beam, 
which almost cannot be found within the damage area for films irradiated by a small laser beam. From the laser damage 
morphology seen in Fig. 6 (c) and (d), we extrapolated that the density of localized defects may affect the LIDT results. 

  
(a)                             (b) 

 
(c)                             (d) 

Figure 6. 1-on-1 damage morphology. (a and b) for small laser beam size (a) 0 degree HR coatings and (b) 65 degree HR 

coating; (c and d) for large laser beam size (c) 0 degree HR coatings and (d) 65 degree HR coating. 

To reveal how the density of the defect affects the LIDT of the coating for large laser beam, we suspect that there is a 
certain density of defects on the coating surface as shown in the schematic diagram of Fig. 7, the large laser beam will 
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Since both of the micro-sized nodules and the nano-sized absorbers cannot explain the contradictory LIDT results with 
different beam size, we need to rethink the dominant damage mechanism for NUV HR coatings. Although the present 
theory still cannot explain this abnormal phenomenon very well, this remains an interesting and fascinating question, 
which merits further exploration of the damage mechanisms for NUV HR coatings. Furthermore, more information and 
understanding about this field will help us to find a more useful way to increase the LIDT of the NUV HR coatings. 

4. CONCLUSIONS 

In this study, the nanosecond laser-induced damage of NIR and NUV HR coatings were investigated. For NIR HR 
coatings, the physical insight of EFI enhancement at nodules are discussed. Light focusing and light penetrating have 
been proven to be the main mechanisms for creating the intensified EFI in the nodules. The focusing characteristics of 
the nodule can be affected by nodular geometry and refractive index of the medium, and the focal length of the nodule 
can be determined via a simplified model. Consequently, the light penetrating behaviors can be estimated via the ADT of 
the nodule. We conclude that strong EFI enhancement is developed when a certain portion of the light penetrates to the 
focal position of the nodules. For NUV HR coatings, our method that reduced the EFI within the coatings by increasing 
incident angle, showed totally different results for small and big testing beam sizes. Compared to 0 degree HR coating, 
65 degree HR coating results in a much lower EFI. Its LIDT was higher for small testing beam size, but lower for large 
beam size. Several experiments were carried out to prove that both the micro-sized nodules and the nano-sized absorbers 
cannot explain this abnormal dependence of LIDT on EFI. We suspect, that some other mechanisms, such as 
plasma-material coupling, may play an important role in this phenomenon. More work is still required to further our 
understanding about this phenomenon. 
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