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ABSTRACT 
Breast cancer has become a major cause of death among women. The lifetime risk of a woman developing this disease 
has been established as one in eight. The most useful way to reduce breast cancer death is to treat the disease as early as 
possible. The existing methods of early diagnostics of breast cancer are mainly based on screening mammography or 
Magnetic Resonance Imaging (MRI) periodically conducted at medical facilities. In this paper the authors proposing a 
new approach for simple breast cancer detection. It is based on skin stimulation by sound waves, illuminating it by laser 
beam and tracking the reflected secondary speckle patterns. As first approach, plastic balls of different sizes were placed 
under the skin of chicken breast and detected by the proposed method. 
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1. INTRODUCTION 
Breast cancer has become a major cause of death among women [1]. The lifetime risk of a woman developing this 
disease has been established as one in eight [2]. The most useful way to reduce breast cancer death is to treat the disease 
as early as possible.  Most primary breast cancers are detected by the patients themselves when the average size is about 
2.5 cm. The survival chance of breast cancer drops from a rate of about 95% when the lump is about 0.5 cm size, to a 
rate of 75% when the cancer is treated at a size of about 2.5 cm. Hence, finding an accurate, simple and effective 
diagnostic method is very important [3]. Breast palpation found to be a simple and brief clinical screening test for breast 
cancer [4]. In addition, there is general agreement that screening mammography reduces the rate of death from breast 
cancer among women [5]. However, studies show that screening can be over diagnosed causing women undergo surgery, 
radiation therapy, hormonal therapy, chemotherapy, or usually a combination of these [6]. Moreover, the sensitivity of 
mammography ranges from approximately 70% to 90% [7-9] and has a high false diagnosis ratio for cancer [10]. 
Therefore, further improvement in mammographic sensitivity is needed [11]. Another tool for breast cancer diagnosis is 
the MRI, which provides high soft tissue contrast, but it has to be made more practical for application in breast imaging 
[10, 12]. 

Another optical tool is diaphanoscopic which is based on the difference in absorption coefficients of various tissues. 
It enables the detection of non-homogeneities in the breast. The areas of dense tumor look darker, while the pockets of 
cyst look clearer as compared to the surrounding tissues. However, breast cancer detection rate using this method is 
about 30% [13]. Ultrasound Tagging of Light (UTL) was proved to be useful in the detection of breast cancer. Photon 
localization in turbid tissue is achieved by cross modulating a laser beam with focused, pulsed ultrasound. Light which 
passes through the ultrasound focal spot is `tagged' with the frequency of the ultrasound pulse. However, much work 
remains to be done to prove the feasibility of UTL technique as a breast cancer imaging system [14]. 

Near-infrared spectroscopy has gained importance for non-invasive or minimally invasive cancer diagnostic 
applications in cancer. It is based on differences of endogenous chromophores between cancer and normal tissues. The 
method provides diagnosis and therapy monitoring of several cancers [15, 16]. Optical coherence elastography was also 
examined in view to diagnose breast cancer. Tumor was identified by obtaining higher Young’s modulus [17-19]. 
Speckle is a common phenomenon in coherent imaging systems and is an artifact degrading target visibility. It occurs 
when a coherent source and a detector are used to interrogate a medium, which is rough on the scale of the wavelength. 
Previous works used speckle pattern in order to characterize tissues. For example, Ruey-Feng Chang et al. evaluated 
breast masses in pathologically-proven tumors based on analysis of ultra-sound (US) speckles for classifying breast 
tumors [20]. Jun Li et al. found that the contrast of the speckle pattern formed by the transmitted light decreased when 
ultrasound acted on the tissues. By measuring the variation of the speckle contrast with the location of ultrasonic column, 
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using Matlab software. The signal amplitude designates the shift in the location of the correlation peak in pixel units of 
the camera. A sketch of the constructed setup and the experimental setup configuration is given in Fig. 3. 

 

Fig. 3. Implemented optical configuration for breast cancer simulated remote measurement (a) Sketch of the optical system. (b) The 
breast cancer simulated experimental setup configuration. 

3. RESULTS 
3.1 Excitation frequency and signal amplitude evaluation 

In order to find the excitation frequency with most significant response, several frequencies within (100-300Hz) were 
examined. The frame rate (FPS) of the digital camera was three times higher than the frequency measured, in order to 
fully fulfill the Nyquist ratio requirements. Furthermore, in order to find the most powerful response, we applied the 
excitation signal under the mentioned frequencies with two different sound wave amplitudes (92dB and 100dB). After 
the preliminary tests, based on the damping duration, the agitation frequency of 300Hz@100dB and camera working at 
900 FPS were selected for further experiments. See Fig. 4. 
 

 
Fig. 4. Damping duration of skin free oscillation vs. stimulation frequency. 

3.2 Plastic balls detection under the skin of the chicken breast 

In order to check the possibility of detection of plastic balls under the skin simulating breast cancer calcification, a 
chicken breast was used as the examined tissue. Cuts under the skin surface were performed for planting four different 
sized balls (of 2, 4, 6 and 8mm in diameter). The top of balls was positioned exactly under the skin surface. As a 
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under the skin in their early stages, which can greatly contribute to the disease recovery chances. Therefore, further 
investigation of the proposed methodology on in-vivo real breast cancer cases is recommended and to be conducted in 
the near future to verify the presented approach. 

One important comment is related to the question of how one can detect the presence of the tumor if a reference 
measurement without the tumor is not available. For this it is important to note that one can always make comparisons to 
the second breast and to use the luck of symmetry between the two measurements as part of the calibration and detection 
process. 

3.3 Plastic balls detection deep under the skin of the chicken breast  

The difference between the current experiment and the previous is related to the balls position inside the tissue. The 
plastic balls were placed (2.5mm and 5mm) under the skin to check the possibility of ball detection in deeper locations. 
The tests were repeated 10 times with green laser and average values were calculated. Significant correlations between 
the ball size and selected parameters under the tested agitation frequency and intensity have not been observed at this 
stage. 

4. CONCLUSIONS 
Experiments for detection plastic balls of 2 to 8mm in diameter placed under the skin of chicken breast sample by 
agitating the area above the ball and analyzing the secondary speckles reflected from the surface during damped free 
oscillation of the skin were conducted for the first time. 

The results show strong correlation between most of the selected parameters and the ball size. Therefore, the balls 
could be detected in case placed under the skin so, that the top of the ball, placed within the tissue, touches the internal 
part of the skin. Based on the obtained results the proposed method should be clinically investigated for breast cancer 
detection feasibility. 

In case the balls were placed deeper inside of the tissue, correlation between the ball size and output was not 
observed at this stage. Further investigations are required with higher agitation intensity and frequency. Thus, in the 
present study we were only capable of demonstrating detection depths in which the balls were touching the internal 
surface of the skin. 
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