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ABSTRACT 

This paper uses the PSO (Particle Swarm Optimization) algorithm to linearly control a BSP unmanned aircraft, enabling 
accurate tracking of a predefined trajectory. In the process of control optimization, the PSO algorithm was implemented 
with a quadratic cost function. During the study, unstable algorithm behavior was observed, as a result of which 
a modification was made by introducing a coefficient suppressing the movement of particles in the search space. The main 
task of the coefficient is to ensure the convergence of the solution. The effect of the coefficient value on population 
behavior was tested. In the simulation research on tracking, the previously generated trajectory was used, which is 
a reference for the location, velocity, and course for the linear dynamic BSP model. The results of these tests were presented 
in the form of waveforms of control signals and waveforms of state variables. By selecting the appropriate parameters, the 
proposed algorithm enabled the repeatability of results, as well as the proper mapping of the trajectory at the time of the 
operation of the algorithm not exceeding 0.03 seconds. 
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1 INTRODUCTION 
Due to the utility and growing popularity of unmanned aerial vehicles (UAV), especially in military field [1], various 
methods of control have been developed [2-5]. One important aspect of controlling these platforms is waypoint following, 
or trajectory tracking. The correct movement of a UAV to a designated destination [10] is one of the main requirements 
for its autonomy. On the other hand, trajectory tracking is a more detailed task, primarily focused on mapping individual 
flight parameters during its execution. Such tasks are carried out using appropriate controllers, the purpose of which is to 
select the right sequence of control signals so that the error resulting from the mismatch to the reference trajectory during 
the flight is as small as possible. 

A classic approach in such control is the use of PID (Proportional Integral Derivative) linear controllers [6]. Their basic 
task is to regulate the control signal on the basis of the error resulting from the difference between the controlled value and 
reference value. The PID controller is a SISO (Single Input Single Output) system with feedback, which does not require 
knowledge of the controlled system model. Assuming a time-varying reference signal, one can implement a trajectory 
tracking problem [7] using, for example, a tracking system. In turn, works [7] and [8] present a method of trajectory 
tracking using an LQR – Linear Quadratic Regulator. The LQR controller implements optimal control (regulation) by 
minimizing the quadratic cost function [9]. Trajectory tracking, resulting from the difference between the target trajectory 
and the original state, can be obtained by converting the linear system into its equivalent in the error space, respectively. 
In [7], the authors present a direct comparison of PID and LQR controllers in the context of trajectory tracking, and 
demonstrate the superiority of the LQR controller. MPC (Model Predictive Control) is another widely used technique for 
designing controllers [10, 12]. It consists of determining an optimal sequence of control signals in parallel with the state 
prediction, minimizing the cost function determined by the designer (usually in a square form with selected weighting 
factors) in such a way that the UAV trajectory tends to the reference trajectory. The optimization takes place over a given 
time window, called the horizon. After performing the optimization at a given time, the system performs only the first step 
of the designated control sequence, then performs the optimization again. This process repeats continuously during system  

 

*piotr.pawlowski@wat.edu.pl; phone +48 261 837 475; www.wat.edu.pl 

Radioelectronic Systems Conference 2019, edited by Piotr Kaniewski, Jan Matuszewski, Proc. of SPIE
Vol. 11442, 114420Z · © 2020 SPIE · CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2565129

Proc. of SPIE Vol. 11442  114420Z-1



 

operation. MPC controllers are used with great success [13, 15-16], despite the requirements of significant computational 
load. Calculations are often carried out on separate platforms that send only designated optimization solutions to UAV 
platforms. Authors in [12] show MPC variants that can be used directly on UAVs. 

This paper presents a method of suboptimal feedback control using PSO (Particle Swarm Optimization) [17]. PSO has 
many applications in various fields of science [14, 19], and also in controller design. The rest of the article presents the use 
of PSO to determine the suboptimal control that implements UAV trajectory tracking. 

2 MATHEMATICAL MODEL 
The paper assumes the UAV model as a rigid body with six degrees of freedom (6 DoF): three representing translational 
displacement, and three corresponding to spatial orientation. Movement is described in two coordinate systems: inertial 
Fe = {Xe, Ye, Ze} associated with Earth, and non-inertial Fb = {Xb, Yb, Zb} associated with the UAV (Fig. 1). 

 
Fig 1. Reference coordinate systems: inertial Earth and non-inertial UAV. 

An UAV moves by regulating angular speeds w1-4 of four engines assembled with propellers generating thrusts ft1-4. In the 
UAV design presented in Fig. 2, motors are located on opposite sides of the intersection of two perpendicular axes. These 
axes simultaneously coincide with the axes Xb, Yb. Due to the difference in forces between the pairs of engines, appropriate 
torques tx and ty are generated, allowing rotation around the corresponding axes – rotation f around the Xb axis and rotation 
q  around the Yb axis (pitch). Propellers also cause torques t1-4 acting in the plane [Xb Yb]. The resultant net torque tz causes 
rotation y around the axis Zb (yaw). 

 
Figure 2. Arrangement of UAV engines and action of forces. 

A mathematical model of the UAV was built based on the following assumptions: 
• symmetric construction, 
• rigid structure, 
• the UAVs center of gravity gc coinciding with the beginning of coordinate system Fb. 

2.1 System dynamics 

For the simulation, a model derived from the Newton and Euler equations presented in [20] was used. Assuming the vector 
[x y z f q y]T as the position and orientation vector in the Fe system, as well as the vector [u v w p q r]T for the vector 
of linear and angular velocities in the Fb system, the dynamic UAV model takes the following form: 
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 (1) 

with the following definitions: s(a) := sin(a), c(a) := cos(a), t(a) := tan(a), and m as the UAV’s mass. Inertia matrix I, 
due to platform construction symmetry, takes the diagonal form of 

 𝑑𝑖𝑎𝑔	(𝑰) = [𝐼] 𝐼^ 𝐼_]. (2) 

Minor damping reflecting aerodynamic drag has been added to the model [22]. Diagonal matrices of displacement and 
rotation aerodynamic coefficients are expressed by the following relationships:  

 𝑑𝑖𝑎𝑔	(𝑫𝒕) = [𝑘L 𝑘O 𝑘Q], (3) 

 𝑑𝑖𝑎𝑔	(𝑫𝒓) = [𝑘B 𝑘D 𝑘F]. (4) 

By organizing individual variables, a state vector is obtained: 

 𝒙 = [𝜙	𝜃	𝜓	𝑝	𝑞	𝑟	𝑢	𝑣	𝑤	𝑥	𝑦	𝑧]e (5) 

along with the control input vector 

 𝒖 = [𝑓h 	𝜏]	𝜏^	𝜏_]e. (6) 

This vector contains, respectively, the value of the resultant lift generated by the engines set ft, torques tx and ty in the Ox 
and Oy axes of the UAV platform, and torque tz in the Oz UAV axis. Finally, the form of a nonlinear dynamic system 
is expressed as 

 �̇� = 𝒇(𝒙, 𝒖). (7) 

2.2 Linearization of nonlinear model 

The four-rotor model is a highly non-linear system with many coupled variables. In order to enable linear analysis of the 
system, the model should be linearized, assuming an appropriate operation point. The most frequently chosen operation 
point is the equilibrium condition obtained when the four-rotor model hovers. This means no UAV movement, so its 
dynamics are described by the following differential equation: 

 �̇�∗ = 𝒇(𝒙∗, 𝒖∗) = 0, (8) 

where x* = [01´9 x y z] and u* = [mg 0 0 0] are nominal values for the given operation point. This condition occurs when all 
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four engines generate a net thrust equal to the weight mg of the UAV in the opposite direction. Under ideal conditions, 
there are no other forces or moments present. 

The system was linearized using the Control System Toolbox of MATLAB/Simulink software, thanks to which the LTI 
(Linear Time Invariant) state space system described by two vector-matrix equations was obtained: 

 �̇� = 𝑨𝒙 + 𝑩𝒖,			𝒚 = 𝑪𝒙 + 𝑫𝒖, (9) 

where AÎÂ12´12 is the system matrix, BÎÂ4´12 is the control matrix, CÎÂ12´12 is the output matrix, and DÎÂ12´4 is the 
transmission matrix. For the calculations, the parameters contained in Table 1 were used and the following results were 
obtained: 

 𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −5.10 0 0 0 0 0 0 0 0
0 0 0 0 −5.10 0 0 0 0 0 0 0
0 0 0 0 0 −3.79 0 0 0 0 0 0
0 −9.81 0 0 0 0 −1.25 0 0 0 0 0

9.81 0 0 0 0 0 0 −1.25 0 0 0 0
0 0 0 0 0 0 0 0 −1.25 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (10) 

 𝑩 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0
0 0 0 0
0 0 0 0
0 51.02 0 0
0 0 51.02 0
0 0 0 37.88
0 0 0 0
0 0 0 0
2.50 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (11) 

 𝑪 = 𝑰��×��, (12) 

 𝑫 = 0��×�. (13) 

The parameters used for UAV modeling are presented in Table 1. 

Table 1. Parameters used to create UAV model. 

Parameter Value 

Inertia matrix deg(𝑰) = [0,0196 0,0196 0,0264] 

Aerodynamic coefficients 
translation deg(𝑫𝒕) = [0,5 0,5 0,5] 

rotation deg(𝑫𝒓) = [0,1 0,1 0,1] 

UAV mass 𝑚 = 0.4	𝑘𝑔 
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3 CONTROLER DESIGN 
3.1 Model discretization 

This application uses a discrete controller with a sampling time of Tc = 0.1s using the PSO algorithm for cost function 
minimalization. The task of the algorithm, considering the assumed quality indexes, is to select such a value of control 
vector u(k) at a given moment k that the difference between the predicted state x(k+1|k) and corresponding reference point 
xref(k+1) is minimal. Due to its discrete nature, the dynamic model (9-13) has also been transformed to the discrete form: 

 	𝒙(𝑘 + 1) = 𝑨�𝒙(𝑘) + 𝑩�𝒖,			𝒚(𝑘) = 𝑪�𝒙(𝑘) + 𝑫�𝒖(𝑘), (14) 

with c2d() command in MATLAB. For sampling time Ts = 0.05s, the following results were obtained: 

 𝑨� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0.0783 0 0 0 0 0 0 0 0 0 0
0 0.6004 0 0 0 0 0 0 0 0 0 0
0 0 1 0.0832 0 0 0 0 0 0 0 0
0 0 0 0.6847 0 0 0 0 0 0 0 0
0 0 0 0 1 0.0783 0 0 0 0 0 0
0 0 0 0 0 0.6004 0 0 0 0 0 0
0 0 0 0 0.0471 0.0014 1 0.0940 0 0 0 0
0 0 0 0 0.9222 0.0399 0 0.8825 0 0 0 0

−0.0471 −0.0014 0 0 0 0 0 0 1 0.0940 0 0
−0.9222 −0.0399 0 0 0 0 0 0 0 0.8825 0 0

0 0 0 0 0 0 0 0 0 0 1 0.0940
0 0 0 0 0 0 0 0 0 0 0 0.8825⎦

⎥
⎥
⎥
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⎥
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⎥
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⎥
⎤

, (15) 

 𝑩� =
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⎢
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⎡

0 0.0488 0 0
0 0.8992 0 0
0 0 0 0.1676
0 0 0 3.1531
0 0 0.0488 0
0 0 0.8992 0
0 0 −0.0004 0
0 0 −0.0161 0
0 −0.0004 0 0
0 −0.0161 0 0

−0.0120 0 0 0
−0.2350 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (16) 

 𝑪� = 𝑰��×��, (17) 

 𝑫� = 0��×�. (18) 

3.2 PSO algorithm for control optimization 

The PSO algorithm searches for solutions in the n-dimensional space of the function to be optimized [18]. This is 
accomplished by iteratively moving the population of p particles to find coordinates for which the value of a given cost 
function is minimal. Each i-th particle has the following known parameters: 

• position xi Î Ân, 
• velocity vi Î Ân, 
• actual best own position p_besti Î Ân. 
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Figure 3. PSO algorithm block diagram. 

The particle with best global value g_best Î Ân is also determined for the entire population. The evolution of the algorithm 
is described by expressions: 

 𝒗�(𝑡 + 1) = 𝑤𝒗�(𝑡) + 𝑐�𝑟𝑎𝑛𝑑()[𝒑𝒃𝒆𝒔𝒕� − 𝒙�(𝑡)] + 𝑐�𝑟𝑎𝑛𝑑()[𝒈𝒃𝒆𝒔𝒕 − 𝒙�(𝑡)], (19) 

 𝒙�(𝑡 + 1) = 𝒙�(𝑡) + 𝒗�(𝑡 + 1), (20) 

where w is the inertia weight, c1 is the value of the so-called personal coefficient, c2 is the value of the social coefficient, 
and rand() is a pseudo-random function which selects a number from a range [0, 1]. The movement of each particle depends 
on its current velocity, its best own position so far, and the global best position for time (iteration) t. The c1 and c2 
coefficients determine the tendency to choose the direction of particle movement. The rand() function gives the algorithm 
a pseudo-random character, while increasing its searching performance. 

Due to its stochastic properties, the PSO is a metaheuristic algorithm [18, 23]. It does not guarantee an optimal solution, 
but only determines a sub-optimal variant that meets given assumptions, as close as possible to the optimal solution. 
This allows for the reduction of the computational load of the solution, at the expense of its accuracy. This is especially 
useful when reaction speed is more important than precision. The algorithm ends its execution after reaching the iteration 
limit or meeting the given criterion, returning the best solution so far g_best. 

3.3 Search space and cost function optimization. 

During the algorithm execution, particles explore the UÌÂ4 space of the control vector u values. At the beginning of each 
iteration (after the movement of the entire population), a cost function is calculated for each particle, considering its current 
position. In the proposed application, the function being optimized takes a quadratic form: 

𝐽�h = �𝒙F�R(𝑘 + 1) − 𝒙�(𝑘 + 1)�
e
𝑸�𝒙F�R(𝑘 + 1) − 𝒙�(𝑘 + 1)� + 

 +[𝒖��M − 𝒖�(𝑘)]e𝑹[𝒖��M − 𝒖�(𝑘)] + [𝒖(𝑘) − 𝒖�(𝑘 + 1)]e𝑹∆L[𝒖(𝑘) − 𝒖�(𝑘 + 1)], (21) 
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where Jti is the cost function value for the i-th particle in the iteration t, ui(k+1) means the coordinates of the i-th particle 
(selected values for control signals), xi means the state that the UAV would achieve by applying the control determined by 
the coordinates of the particle i, and unom is the nominal value of the control vector (for the equilibrium point). Disturbances 
and measurement errors are not considered [21]. For known initial values of the state vector, the values of xi(k+1) 
are determined directly from the expression (14). 

Diagonal weighting matrices Q ³ 0ÎÂ12´12 and R, RDu ³ 0ÎÂ4´4 determine the impact of each factor in total value of the 
cost function. The Q matrix is responsible for the influence of error magnitude between state variables and their reference 
values (fitness criterion). The R matrix determines the reaction to the difference between the nominal values of the control 
signals and the values selected in a given solution (energy criterion). The RDu matrix is responsible for the impact of the 
difference between the selected control and the current signal level (signal dynamics criterion). 

  
a)  b) 

  

c) d) 

Figure 4. a-d) PSO solution searching process. 

The algorithm allows for the explicit limitation of the values of the control signals. By imposing a condition on the allowed 
positions of particles in the search space 

 𝒖M�� ≤ 𝒖� ≤ 𝒖M�] (22) 

it can be ensured that no control value outside the specified range is selected. 
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4 SIMULATION RESULTS 
4.1 Initial parameter configuration 

The following parameters for the PSO algorithm were adopted for the simulation tests: number of particles p = 40, iterations 
limit it_lim = 150, inertia coefficient w = 0.9298, and personal and social coefficients c1 = c2 = 1.4986. The diagonals of the 
weight matrices were selected as follows: 

 𝑑𝑖𝑎𝑔(𝑸) = [1 1 5 1 1 1 5 5 5 5 5 5], (23) 

 𝑑𝑖𝑎𝑔(𝑹) = [0,0057 1,25 1,25 5], (24) 

 𝑑𝑖𝑎𝑔(𝑹∆L) = [1 1 1 1]. (25) 

The search space of the PSO algorithm has been limited by the following ranges: 

 �
−4
−0.2
−0.2
−0.1

� ≤ 𝒖� ≤ �
3.942
0.2
0.2
0.1

�, (26) 

where this range refers to the nominal control unom in which the value of the first coordinate mg has been compensated, 
so unom = [0 0 0 0]. 

In order to perform the simulations, a test trajectory was generated containing references for position, velocity and course 
(Figs. 5-6). 

 
Figure 5. Reference values for state variables of UAV. 

Other state variables, without reference values, were compared with their equilibrium values x*, so 

 𝒙F�R(𝑘) = [0	0	𝜓F�R(𝑘)	0	0	0	𝑢F�R(𝑘)	𝑣F�R(𝑘)	𝑤F�R(𝑘)	𝑥F�R(𝑘)	𝑦F�R(𝑘)	𝑧F�R(𝑘)]e. (27) 
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Figure 6. 3D path profile (T): S – starting point, D – destination point. 

4.2 PSO algorithm improvements 

The first attempts showed unstable operation of the algorithm. Control signal waveforms generated by the algorithm were 
characterized by strong distortion (Fig. 7). 

 
Figure 7. Control signal waveforms generated in initial configuration. 

Despite the occurrence of undesirable distortion of control signals, the algorithm showed the ability to track the given 
trajectories of individual state variables (Figs. 8-9). Therefore, an improvement in the process of determining signal values 
could be achieved by the additional modification and tuning of algorithm parameters. 
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Figure 8. State variable waveforms [u, v, w] for initial configuration. 

 
Figure 9. State variables waveform [x, y, z, y] for initial configuration. 

After observing the execution of the PSO algorithm, it was noticed that the problem with stability is due to the difficulty 
in achieving convergence. By design, each particle should gradually approach the global best solution, while reducing its 
velocity in subsequent iterations. Thus, it is possible to exploit more closely neighborhood of the best solution. This effect 
was not achieved in the basic algorithm configuration (Fig. 10). The velocities of the particles did not decrease sufficiently, 
resulting in long-distance motion. The end result was a large spread around the globally best solution. Let S Ì Â+ be a set 
of Euclidean distances si of all particles from the position g_best, so 

 𝑠� = ‖𝒈𝒃𝒆𝒔𝒕 − 𝒙�‖. (28) 

The average distance between the particles and g_best in the last iteration was assumed as the measure of population 
spread: 

 𝜀 =
∑ 9 
A
 ¡¢
B

. (29) 
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In order to improve the convergence of the algorithm, expression (19) was modified by implementing a factor l that scales 
the velocity of particles in each iteration: 

 𝒗�(𝑡 + 1) = 𝜆¤𝑤𝒗�(𝑡) + 𝑐�𝑟𝑎𝑛𝑑()[𝒑𝒃𝒆𝒔𝒕� − 𝒙�(𝑡)] + 𝑐�𝑟𝑎𝑛𝑑()[𝒈_𝒃𝒆𝒔𝒕 − 𝒙�(𝑡)]¦. (30) 

Table 2 presents the simulation results for the factor l in the range <0.3, 0.8>. Without considering l, the algorithm 
obtained the following results: average value of the dispersion index eavr = 1.3944, minimum value emin = 0.9380, maximum 
value emax  = 2.0023, and total path cost Jc1 = 8.5574e + 05.  

 
Figure 10. Values of e for initial configuration. 

Table 2. Comparison of experiment results for different values of l. 

l eśr emin emax Jc1 – Jcl 

0.3 1.6238e-11 9.3965e-19 2.8786e-09 3.4817e+03 

0.35 6.1628e-10 5.8451e-18 2.6602e-08 1.5645e+03 

0.4 8.0896e-09 6.2658e-17 6.9009e-08 5.4511e+03 

0.45 1.7173e-08 6.8815e-15 9.4198e-08 1.2267e+04 

0.5 1.9109e-08 4.4003e-11 8.4363e-08 1.3897e+04 

0.55 2.1086e-08 3.8774e-11 9.8508e-08 1.3913e+04 

0.6 2.4056e-08 5.0962e-11 1.1915e-07 1.3913e+04 

0.65 2.7744e-08 4.7023e-11 1.6079e-07 1.3914e+04 

0.7 3.4030e-08 8.8582e-11 2.0271e-07 1.3913e+04 

0.75 6.1766e-08 4.1638e-09 6.8558e-07 1.3913e+04 

0.8 5.1780e-06 3.5249e-07 9.3663e-04 1.3913e+04 

 

Based on the simulation results, it can be concluded that the best variant is l equal to 0.65. Fig. 11 shows a graph of changes 
in the index e for the selected value l. The difference can be clearly seen compared to the initial version of the algorithm 
– the magnitude order of the average value eavr is several times smaller, which coincides with the original assumptions. 
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The total cost Jc also improved, mainly due to the decrease in the cost of control signal dynamics, whose waveforms are 
shown in Fig. 12. 

 
Figure 11. Values of e for l = 0.65. 

 
Figure 12. Control signals generated for l = 0.65. 

After the stabilization of the control signals, the trajectories were smoothened (Figs. 13-14) but their shape and fitness 
changed only slightly. This indicates that the algorithm's instability has no effect on its efficiency (in the context 
of matching to reference trajectories). The sum of squares of differences between real values and reference state variables 
[u, v, w, x, y, z, y] at all discrete moments k was taken as fitness criterion µe:   

 𝜇� = 𝑒L + 𝑒O + 𝑒Q + 𝑒] + 𝑒^ + 𝑒_ + 𝑒©, (31) 

 𝑒ª:= ∑ [𝛼F�R(𝑘) − 𝛼(𝑘)]�@ . (32) 

Table 3 compares the individual components of the indicator µe for lopt = 0.65 and l0 = 1. 

Table 3. Comparison of error values for the basic and modified variants of the PSO algorithm 

 eu ev ew ex ey ez ey µe 

l0 1.8193e03 1.0054e03 3.2405 2.4148e05 1.4808e05 41.9107 5.2868e06 5.6792e06 

lopt 1.8307e03 1.0497e03 2.1436 2.1246e05 1.3312e05 32.6742 5.0034e06 5.3519e06 

eopt ÷ e0 1.0060 1.0441 0.6615 0.8798 0.8990 0.7796 0.9464 0.9424 
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Figure 13. State variable waveforms [u, v, w] for l = 0.65. 

 
Figure 14. State variable waveforms [x, y, z, y] for l = 0.65. 

4.3 Selection of weight matrices elements 

Due to the lack of significant improvement in the adjustment of state variable trajectories to their reference values (despite 
the stabilization of the PSO algorithm), attempts have been made to improve the fitness indicator by changing the values 
of the weight matrices. Analyzing the results from Table 3, it can be seen that the largest errors are coupled with variables 
u, v, x, y, y, with error ey an order of magnitude greater than other errors. However, weighting factors for individual 
matrices were intuitively modified, considering that the weighting factor for ey should be greater than the weighting factors 
corresponding to the remaining state variables being tracked. Finally, the weighting matrices took the following values: 

 𝑑𝑖𝑎𝑔(𝑸) = [1 1 25 1 1 1 20 20 5 20 20 5], (33) 

 𝑑𝑖𝑎𝑔(𝑹) = [0,00057 0,125 0,125 0,5], (34) 

 𝑑𝑖𝑎𝑔(𝑹∆L) = [1 1 1 1]. (35) 

The simulation results for the new values of the weight coefficients are presented in Figs. 15-17. Table 4 presents 
a comparison of individual components of the index µe for the modified values of Ropt and the unmodified R0. 
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Figure 15. Control signal waveforms for modified weight matrices. 

 
Figure 16. State variable waveforms [u, v, w] for modified weight matrices. 

 
Figure 17. State variable waveforms [x, y, z, y] for modified weight matrices. 
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Table 4. Comparison of error values for the basic and modified variants of the PSO algorithm. 

 eu ev ew ex ey ez ey µe 

R0 1.8307e03 1.0497e03 2.1436 2.1246e05 1.3312e05 32.6742 5.0034e06 5.3519e06 

Ropt 82.4018 56.4724 2.1201 9.3949e03 6.4715e03 2.9794 7.1436e04 8.7447e04 

eRopt ÷ eR0 0.0450 0.0538 0.6615 0.0442 0.0486 0.0911 0.0142 0.0163 

5 CONCLUSIONS 
The applied PSO algorithm presents accurate results in the discrete process of controlling an unmanned aerial vehicle. 
Despite the difficulties associated with the unstable operation of the algorithm, the implemented factor l suppressing the 
motion of the population of particles allowed for the improvement of the average population dispersion by almost 8 orders 
of magnitude. Application of the coefficient l = 0.65 resulted in the reduction of eavr from 1.3944 to 2.7744e-08. Thus, 
much greater precision of optimization was achieved, while slightly increasing the total cost of the route. 

The stabilization of the PSO algorithm did not bring significant benefits in terms of matching to the given trajectory, 
reducing the value of µe by only 5.8%. In order to improve the fitness index, weight matrices determining the cost function 
were modified. The selection of new weighting coefficients allowed for improvement of µe by over 98%, which was 
illustrated in the plot of individual state variables. 

In subsequent stages of work on the application of the PSO algorithm to optimize the tracking of UAV trajectories, one 
can consider the application of integration term for fitness error into cost function. This would eliminate visible steady-
state error. Another modification may be the introduction of requirements on the output values of state variables, thus 
limiting the system dynamics. 
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