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ABSTRACT

A family of linear and nonlinear processors (filters) for image recognition, which

are extensions of the previously developed filters called 1p -norm optimum filters,

are presented. These filters are 4-norm optimal in terms of tolerance to input

noise and discrimination capabilities. The /p-norm is the generalization of the

usual mean squared (12) norm, obtained by replacing the exponent 2 by any

positive constant p (usually p > 1). These processors are developed by mini-

mizing the 1v -norm of the filter output due to the input scene and the output

due to input noise. The minimization is carried out by constraining a function

of the filter output to attain a fixed peak value when the input is the target to

be detected.

The use of 4-norm to measure the size of the filter output due to noise gives

a greater freedom in adjusting the noise robustness and discrimination capa-

bilities. The flexibility in allowing more general type of constraints allows for

experimenting and may lead to designing of filters to obtain better performance

by selecting an appropriate filter constraint equation to match the metric used
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to measure the performance of the filter.

we give an unified theoretical basis for developing these filters. This family

of filters include some of the existing linear and nonlinear filters.

Key words: 4-norm filters, nonlinear filters, pattern recognition, signal de-

tection.

1. INTRODUCTION

In this paper we review and extend a family of filters developed for image

recognition. A family of filters termed 4-norm optimum filters were designed

based on minimizing the output due to the input signal and the output due to

the input noise.' To measure the size of the output, lr -norm metric was used.

Theoretical development of these filters is given in detail in reference [1]. In

this paper paper we extend the results obtained in [1], by constraining the filter

output or a nonlinear function of the filter output to attain a fixed peak value

when the input is the target to be detected. This is explained in section 3.

Numerous types of filters have been developed for image and pattern recog-

nition, for instance the matched filter2 and its variations (see e.g., references

[3 -9]). Matched filter maximizes the signal to noise ratio in the presence of sta-

tionary additive noise, but it it is shown to have low discrimination capabilities.5

On the other hand, variations of these filters have shown to be discriminant with
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good correlation performance.4,8,10,11 Various other filter based on different de-

sign criteria have been proposed to optimize some criteria or for compromise

between different criteria.'2 -16

Recently we developed a family of filters for image recognition, which were

based on minimizing output due to the input signal and the output due to

the input noise.' We used the 4-norm to measure the output. By choosing to

minimize both the 4-norm of the output due to noise and the output due to

the input scene; or either one of the two; and using different values of p, we

generated a family of filters indexed by parameters q = pP1 and a, where q

controls the discrimination and robustness of the filter and a is the standard

deviation of the additive noise.

In this paper we extend the development of 4-norm optimum filters, by

allowing more general type of constraint on the filter output when the input is

the target. This allows us to generate a family of filters. The family is indexed

by parameters q, a, and f where q = p l is positive scalar which controls the

discrimination and robustness of the filter, a is the standard deviation of the

additive noise, and f is a functional defining the constraint equation when the

input to the processor is the target itself (see section 3). A special type of

constraint function f gives us two general families of filters, one indexed by

parameters (a, q, b, c) and the second is indexed by parameters (u, d). These

two family of filters will include many of the long existing, as well as, some

of the more recently proposed filters. Thus, the results of this paper provide
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the mathematical justification of some of the novel filtering ideas which have

recently been proposed.

In subsection (3.3) we list some of the more well known filters, which can

be obtained by the family of filters developed in this paper, by choosing the

appropriate parameters in our equations describing these filters. In particular,

the class of filters developed here includes and extend the kth law nonlinear

filters7, as well as, the more general form of the kth law nonlinear filters, known

as dual nonlinear correlators.17 The family developed in this paper also includes

the family of the 1p- norm filters developed previously by the authors.' The pre-

viously developed 4-norm filters include the classical matched filter, the phase

only filter,4 and the adaptive image discriminating and noise robust nonlinear

processor of Refegier, Laude and Javidi.11

The new idea in this paper is to allow more general type of constraint equa-

tion with respect to which, the minimization of expressions controlling the dis-

crimination capabilities and noise robustness are carried out. Since the function

f describing the constraint equation can be arbitrary and general (with some

restriction as explained in section 3), one obtains a great deal of flexibility, and

by judicious choice of f, perhaps one can obtain optimum results by relating the

functional f to the metric used to measure the performance of the filters. As

mentioned a particular choice of f leads to k -law nonlinear filters, which have

been shown to be more discriminant than the usual matched filter.

Paper is organized as follows. In section 2 we briefly state and review the
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minimization problem which is the basis of 4-norm filters.' Since the theo-

retical development of these filters is along the lines of filters developed which

appears in reference [1], we simply state the final results. In section 3 we extend

the theoretical developments of the 1p -norm filters by imposing a general con-

straint on the output of the filter when the input is the target to be detected. In

subsection 3.1 we consider very general type of constraints given by a function

f and obtain a family of filters denoted by H(q In subsection 3.2 we consider

special types of constraining functions f. This gives us a related family of filters

denoted by H(9 H(q,b,c), H(q,b,c) and H(u,d). In subsection 3.3, we list some

of the more popular filters and other existing filters which are special cases of

the classes of filters developed in subsection 3.2. In section 4 some simulation

results are presented conclusions are presented in section 5.

2. ANALYSIS

In this section we review the development of the 1v -norm filters,' and collect

the necessary background materials. We refer the reader to [1] for a detailed

analysis.

Let r(j) denote a target to be detected, and n(j) the additive noise, which

we assume to be zero mean and white stationary. Then the input to the system

(filter) is

s(j) = r(j) + n(j). (1)
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Let S(k), R(k), and N(k) denote the Fourier transforms of s(j), r(j), and n(j),

respectively.

Let h denote the impulse response function of the system and H denote the

Fourier transform of h. The filter h(j) is designed such that, the filter output

due to the target r is

J-1
E h(j)*r(j) = C(0), (2)
j=0

where C = C(0) is a positive constant. To achieve both robustness and dis-

crimination capabilities, the filter h(j) is designed to minimize a weighted sum

of the pth power of 4-norms mean of the output due to noise n, and the pth

power of lP -norm of the output due to input signal s. That is, h is chosen to

minimize,

J-1 J-1 J-1
a E El E h(j - l)n(l)IP + b E I E h(j - l)s(l)IP, (3)

j=0 1=0 j=0 l

under the constraint of equation (2). The weights a and b are suitably chosen

positive quantities. If the emphasis is on robustness, b is the larger of the two.

If the emphasis is on discrimination, a should be the dominant quantity. We

only consider the case, (a = b = 1), (a = 1, b = 0) and (a = 0, b = 1).

The minimization problem given by equation (3) for the case 1 < p < 2, can

be stated in Fourier domains: Minimize

J-1
E + ¡S(7)i9),
j=0

J-1
subject to E H(j)*R(j) = JC(0). (4)

j=o
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where q= and &q = EIN(j)Pq.

2.1. General Nonlinear filters based on optimization using lr norms

The solution of the minimization problem of equation (4) is a constant multiple

of"

Hq(j) _ IR(3)1 9

exp(i4R(1)),
:6-q +

(5)

where &q = EIN(j)lq and (1)R(3) is the argument (phase) of the complex quantity

R(j), that is, R(j) = IR(j)i exp(i4)R(3))

The case p = 1 requires a different approach. We refer the reader to [1].

However, if we settle on using the lower bound estimate, EIN(j)lq > [Ql:J]q

which holds for q> 2, we obtain a crude approximation of a filter equation for

the case q = o0 or p = 1, given below,"

Hóo(i) _ [max{VjQ, !SUM] eXp"1") (6)

We should point out that equation (5) requires the values of EIN(j)j". With few

exception this quantity may be difficult to compute. The reader can find some

lower bound and upper bound estimates for various types of noise processes in

reference [1].

2.2. Sub family of linear and nonlinear filters based on minimiz-

ing the /p-norm

If we only minimize the filter output due to the input scene s, subject to equation
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(2), we obtain the following family of filters , which we denote by H°,

MU) = IR(j)I Q11 IS(j)I'- 1 eXp(i(DR(i)),

where q > 2, and

(7)

H() = IS()I 1 exp(z4)R(i)). (8)

If we only minimize the output due to the additive noise, we obtain a filter

denoted by Hq, where q > 2,

and

Hq(.i) = IR(.1)I911 exp(i(DR(i)), (9)

H00(.7) = exp(i(DR(i)), (10)

3. EXTENSIONS OF THE /p-NORM OPTIMUM

FILTERS

3.1. General case

We now extend the development of the lu -norm optimum filters by allowing

more general type of constraint on the output of the filters when the input is

the target itself. More precisely, we replace the constraint given by Eq. (2), by

the following more general type of constraint:

N-1

f(H,R) = J E Qi[IHu)IIPi[IRu)II eXP[OR(i) _ d'H(i))] = C, (11)
7=0
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where H(j) is the filter transfer function and R(j) is the Fourier transform of

the target. Q and P3 are arbitrary real valued function of one variable selected

at the discretion of the designer. Thus in Eq. (2), Q3 [I H(j) I ] = I H(j) i and

P3 [I R(j)j] = I R(j) i .
If we impose that, the functions Q3 (.) be differentiable, one

to one (a function g is one to one provided that, g(x) = g(y) implies x = y), and

the functions G; (t) = Q t) have well defined inverses, then the minimization of

Eq. (4) under the constraint of Eq. (11) can be transfered to Fourier domain.

The details of transference of the minimization problem from spatial domain

to Fourier domain and the solution of the minimization problem in Fourier

domain with constraint prescribed by Eq. (11) are similar to the ones described

in appendix A of reference [1]. As in [1], it can be shown that the solution of

the minimization problem given by Eq. (4) but with the constraint given by

Eq. (11), is a constant multiple of

H(a,f)(j) = [G1(
'

âP iI
+ S((j)I9))

exp(iR(f)),

where G; 1 (t) is the inverse of

Gi (t) =
t9-1

, t > O.

(12)

(13)

If we minimize the filter output that is only due to the input scene s, subject

to constraint of Eq. (11), we obtain the following family of filters , which we

denote by H14

H(e,f)(j) = [G;' (Pf[IR(i)I]IS(i)I-°)] exp(i(DR(i)), (14)
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where q > 2.

If we only minimize the output that is due to the additive noise, we obtain

a filter denoted by H(q,f), where q > 2,

H(q,f)(j) _ [G3 1(Pi[IRU)I]IS(f)I-g)] exp(Z(1)R(i)), (15)

3.2. Special cases

We now consider special types of the functions Q3 and P3 for the constraint

equation. Consider the special case of constraint equation given by

J -1

f(H,R) _ E IR(j)I`i eXp[i(4.Ru) - 43H(3))l = JC, (16)
j =o

where b3 and cf are arbitrary constants with b3 0. With this constraint we

obtain the family indexed by q, b = (bo, ..., b3 _1), c = (co, ..., cJ_1), and a. In

this case the filter which we obtain by minimizing Eq. (4) takes the following

form,

H(q,b,c)(7) = IR(i)I`j 9

exp(iR(f))
q+IS()Iq

(17)

If we only minimize the filter output that is due to the input scene s, subject

to constraint of Eq. (11), we obtain the following family of filters,

H(q,b,)(j) = 114:7)1q-bi IS(i)1 exp(iR(f)),

where q > 2.

(18)
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tf(Vc)0') = \R(j)\^\S(j)\^ exp(i^R{j)), (18)

where q > 2.
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If we only minimize the output that is due to the additive noise, we obtain

a filter denoted by H(q,b,c), where q> 2,

H(q,b,c)(j) = IRO)Iq-bi exp(z4.R(i)), (19)

The forms of equations of filters given by Eq. (18) and Eq. (19) suggest that

by a judicious choice of q, b = (b0, ..., b,7_1), and c = (CO, ..., cJ_1), and by

either minimizing the output that is due to the input noise or by minimizing

the output that is due to the input scene, we can obtain any filter of the form,

Heu,d)(i) = IR(Aidils(Dlu' eXp(icl'R( ,)), (20)

This type of filter had previously been proposed by Kotynski and Chalasinska-

Macukow.17

3.3. Summary and comparison with the popular filters

In reference [1] we had derived class of linear and nonlinear filters defined by

equations 5 thorough 10, (14), (15), and by equations (17) through (20).

(i)H(cq b c) family, given by equations (5), (6), and (17). Here 2 < q < co.

The filters defined by these three equations are nonlinear, and developed to be

both robust to noise and discriminant against false objects.

(ii) H?q b c) family, given by equations (7), (8), and (18). Here 2 < q < oo.

The filters defined by these three equations are nonlinear, and were derived to

optimize their discrimination capabilities.

(iii) H(q,b,cl family, given by equations (9), (10), and (19). Here 2 < q < 00.
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If we only minimize the output that is due to the additive noise, we obtain 
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either minimizing the output that is due to the input noise or by minimizing 

the output that is due to the input scene, we can obtain any filter of the form,

= \R(j)\di\S(j)\u>exV(i*R(j)), (20)

This type of filter had previously been proposed by Kotynski and Chalasinska- 
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(i) /f^ b cj family, given by equations (5), (6), and (17). Here 2 < q < oo.

The filters defined by these three equations are nonlinear, and developed to be 

both robust to noise and discriminant against false objects.

(ii) H®q b c) family, given by equations (7), (8), and (18). Here 2 < q < oo.

The filters defined by these three equations are nonlinear, and were derived to 

optimize their discrimination capabilities.

(iii) family, given by equations (9), (10), and (19). Here 2 < q < oo.
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The filters defined by these three equations are linear, and were derived to be

robust to noise.

(iv) H(u,d) family of filters defined by Eq. (2).

This family is obtained by judicious choices of indices q, , b, and c of the filters

given by Eqs. (17) and (18).

Recall that these filters are obtained by minimizing the the output energy due

to noise using 1p norm as the metric, where p = q /(q - 1). Since 1p -norm is

decreasing function of p, that is for pi > P2

I1c112, <_ IIcIIpz, (21)

we expect that filter becomes more discriminant as q tends to infinity. This is

also confirmed by computer simulations (see section 3).

We also note that, the aforementioned families of filters generalize many

exiting filters. For instance H2 given by equation (11) is the filter derived in

reference [8]. Let us recall that, the output of kth law Fourier plane nonlinear

filter at the Fourier domain

The aforementioned families of filters generalize many existing filters. For

instance HZ 0 given by equation (5) is the filter derived in reference [11]. Let us

recall that, the output of kth law Fourier plane nonlinear filter at the Fourier

domain is given by '°

C(j) = IR()Ikls()Ik exp(OR(i) - l'su))), (22)

252 / Critical Reviews Vol. CR74

The filters defined by these three equations are linear, and were derived to be 

robust to noise.

(iv) H(u d) family of filters defined by Eq. (2).

This family is obtained by judicious choices of indices q,, b, and c of the filters 

given by Eqs. (17) and (18).

Recall that these filters are obtained by minimizing the the output energy due 

to noise using lp norm as the metric, where p = q/{q — 1). Since lp -norm is 

decreasing function of p, that is for pi > po

IML < IMU, (21)

we expect that filter becomes more discriminant as q tends to infinity. This is 

also confirmed by computer simulations (see section 3).

We also note that, the aforementioned families of filters generalize many 

exiting filters. For instance H% given by equation (11) is the filter derived in 

reference [8]. Let us recall that, the output of fcth law Fourier plane nonlinear 

filter at the Fourier domain

The aforementioned families of filters generalize many existing filters. For 

instance fLf,o given by equation (5) is the filter derived in reference [11]. Let us 

recall that, the output of fcth law Fourier plane nonlinear filter at the Fourier 

domain is given by 10

C(j) \R(j)\k\S(j)\kexp(i^RU)-^s{j))) (22)
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where 0 < k < 1. The output is obtained by taking the inverse Fourier transform

of C(j). Let

Hk(j) = IR(j)lkI5(j)lk-1 (23)

then the output of the kth law Fourier plane nonlinear filter is inverse Fourier

transform of C(j) where

c(j) = Hk(j)*S(j) (24)

Equations (7), (8), (20), and (22) show the similarity of the kth law nonlinear

filters with H9 filters of Eq. (7) and H(u,d) filters of Eq. (22). In fact, Ha, filter

is precisely the kth law nonlinear filter for k = 0, and by letting d3 = k and

u3 = k -1 in Eq. (22), one obtains the kth law nonlinear filters.

In the table below we list some of the more popular filters which can be obtained

by using different values for o, q, u3 and d3

Table 1. Popular filters obtained from H9 and H(u,d) family of filters.

Popular filters Family Parameters
k -th law nonlinear filters H(u,d) u3 = k - 1, d; = k
Phase only matched filter H(u,d) u3 = 0, d = 0
Binary JTC H(u,d) u3 = -1, d3 = 0
Matched filter H(u,d) uj =1, dj = 0
Dual nonlinear correlator H(u,d) u3 = L - 1, d3 = M
Nonlinear JTC of [11] Hq q = 2
Absolute mean value filter Ha q = o0
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is precisely the fcth law nonlinear filter for k = 0, and by letting dj = k and 

Uj = k — 1 in Eq. (22), one obtains the kth law nonlinear filters.

In the table below we list some of the more popular filters which can be obtained 

by using different values for cr,q,Uj and dj.

Table 1. Popular filters obtained from H° and H(u d) family of filters.

Popular filters Family Parameters
fc-th law nonlinear filters u,d) Uj = k — 1, dj — k
Phase only matched filter f£(u,d) Uj = 0, dj = 0
Binary JTC H(u,d) Uj = — 1, dj — 0
Matched filter u,d)

oII
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r*-tII3

Dual nonlinear correlator ■^(Uyd) Uj = L — 1, dj — M
Nonlinear JTC of [11] q = 2
Absolute mean value filter hz q — oo
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4. COMPUTER SIMULATIONS

To test the performances of the filters designed in section 2, we have performed

some computer simulations. In our simulations our target is a jet airplane. The

size of the target is 107 x 70 pixels as shown in Fig. 1. The target is placed in

scene containing color background noise background and additive white Gaus-

sian noise (AWGN) as shown in Fig. 2. The additive noise is stationary with

mean, µ = 0 and standard deviation, a = .5. The bandwidth of the background

noise is 50 x 50 pixels, and its mean at each pixel as .2 and its standard deviation

at each pixel is .2. The size of the scene is 256 x 256 pixels.

Figures 3 and 4 show the output of the HQ family of filters given by Eqs.

(5). Figure 3 is the output of the filter when q = 2, figure 4 is the output of the

filter when q = 10. The set of filters whose output is given by figures 2(a) and

2(c) were designed to optimize both the noise robustness and discrimination

capabilities. We see that the correlation peaks are sharper for larger values of

q.

Figures 5 through 7 show the output of the H9 family of filters given by

Eqs. (7) and (8). Figure 5 is the output of the filter when q = 2, figure 6 is

the output of the filter when q = 10, and figure 7 is the output of the filter

when q = oo, given by Eq. (8). The set of filters whose output is given by

figures 5 through 7 were designed to optimize both the noise robustness and

discrimination capabilities. Once again we see that the correlation peaks are

sharper for larger values of q. Since in the derivation of H9 filters only the lP
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Eq. (5) with qú2 : µ =0, oú0.5 AWGN and µa0.2, o =0.2 Color Background Noise

250

Figure 3: Output of the 1v -norm filter optimized for both discrimination capa-
bilities and noise robustness (Eq. 5).
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Figure 4: Output of the 1p- norm filter optimized for both discrimination capa-
bilities and noise robustness (Eq. 5).
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Figure 3: Output of the ip-norm filter optimized for both discrimination capa­
bilities and noise robustness (Eq. 5).
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Eq. (7) with q =2 : h =0, 0=0.5 AWGN and 5 O.2, cr=0.2 Color Background Noise

250

Figure 5: Output of the lu -norm filter optimized for discrimination capabilities
and noise robustness (Eq. 7).

norm of the scene input is minimized, we notice the higher values of peaks at

non -target location.

Figures 8 through 10 show the output of the Hq family of filters given by

Eqs. (9) and (10). These filters are linear. Figure 8 is the output of the filter

when q = 2, figure 9 is the output of the filter when q = 10, and figure 10

is the output of the filter when q = co, given by Eq. (10). The set of filters

whose output is given by figures 8 through 10 were designed to optimize both

the noise robustness and discrimination capabilities. Once again we see that the

correlation peaks are sharper for larger values of q. Note that, when q = 2, Hq

filter is the usual matched filter.
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Figure 5: Output of the Zp-norm filter optimized for discrimination capabilities 
and noise robustness (Eq. 7).

norm of the scene input is minimized, we notice the higher values of peaks at 

non-target location.

Figures 8 through 10 show the output of the Hq family of filters given by 

Eqs. (9) and (10). These filters are linear. Figure 8 is the output of the filter 

when q = 2, figure 9 is the output of the filter when q = 10, and figure 10 

is the output of the filter when q = oo, given by Eq. (10). The set of filters 

whose output is given by figures 8 through 10 were designed to optimize both 

the noise robustness and discrimination capabilities. Once again we see that the 

correlation peaks are sharper for larger values of q. Note that, when q — 2, Hq

filter is the usual matched filter.
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Figure 6: Output of the 4-norm filter optimized for discrimination capabilities
(Eq. 7).
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Figure 6: Output of the Zp-norm filter optimized for discrimination capabilities 
(Eq. 7).
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Figure 7: Output of the Zp-norm filter optimized for discrimination capabilities
(Eq. 8).

Proc. of SPIE Vol. 10296  102960B-19



260 / Critical Reviews Vol. CR74

Eq. (9) with q =2 : µ -0, o =0.5 AWGN and µ =0.2, a =0.2 Color Background Noise
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Figure 8: Output of the 1p -norm filter optimized for noise robustness (Eq. 9).
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Figure 9: Output of the 4-norm filter optimized for noise robustness (Eq. 9).
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Figure 8: Output of the Zp-norm filter optimized for noise robustness (Eq. 9).
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Figure 9: Output of the Zp-norm filter optimized for noise robustness (Eq. 9).
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Eq. (10): g =0, a =0.5 AWGN and g=0.2, a =0.2 Color Background Noise

250

Figure 10: Output of the 4-norm filter optimized noise robustness (Eq. 10).

5. CONCLUSIONS

We reviewed and extended the development of the 4-norm optimum filters.

These filters were derived based on using an 1p -norm metric for arbitrary values

of p > 1, rather than the standard mean squared metric. 4-norm criterion is

used to derive filters to obtain greater freedom in adjusting noise robustness

and discrimination capabilities.

These filters were obtained by minimizing the output due to noise and output

to due the input signal, using lP norm as the metric, subject to certain constraint

on the output of the filter when the input to the system is the target to be

detected. The freedom in choosing the constraint on the output when the input

to the system is the target to be detected allows the designer of the filter to

emphasis or deemphasis certain range of the frequencies.

1999 Euro-American Workshop on Optoelectronic Information Processing / 261

Eq. <10): n=0, 0*0.6 AWGN and jj=0.2, o=0.2 Color Background Noise

{■( ' th k
V' (m\[t

Figure 10: Output of the Zp-norm filter optimized noise robustness (Eq. 10).
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These filters were obtained by minimizing the output due to noise and output 

to due the input signal, using lp norm as the metric, subject to certain constraint 

on the output of the filter when the input to the system is the target to be 

detected. The freedom in choosing the constraint on the output when the input 

to the system is the target to be detected allows the designer of the filter to 

emphasis or deemphasis certain range of the frequencies.
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The family of filters developed here gives a unified mathematical justification

of the many of the well known, as well as, some of the more recently proposed

filters.

We also tested the performance of the filters using computer simulation sand

examined the discrimination capabilities of the filters for different values of p.

The tests that we conducted show that, the filters performance (discrimination

capabilities) improves when p decreases. This is shown by sharp peaks at the

target location.
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