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1 Introduction
The introduction of optical correlators [1] has stimulated the study of pattern
recognition filters based on correlation [2] [3]. Linear filters, such as the matched
filter, have been designed to detect a target in the presence of additive noise.
However, there exists a different type of noise which is inherent to image processing.
It appears as soon as the problem of locating a target appearing on a random
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background is addressed. In such cases, the background itself must be regarded as
non -overlapping noise [4] [5]. In the presence of such noise, it has been shown that
linear filters can fail in locating the target [6].

Furthermore, the efficiency of correlation based techniques can drastically de-
crease if the object to be detected, located or recognized becomes different from
the reference used in the correlation operation. This occurs for example in tar-
get tracking applications where the target's attitude in the scene varies or when
recognition has to be performed with a large amount of invariance capabilities. A
classical solution to this issue has been to design composite filters [7] which allow
one to store different attitudes of the target in a single filter.

Recently, algorithms optimal in the Maximum Likelihood (ML) sense [8] for
location of an object embedded in non -overlapping noise have been proposed [9,
10] and a unified method has also been designed [11]. In these approaches, the
input image is considered to be composed of two independent random fields and
the corresponding methods are thus denominated Statistically Independent Region
(SIR) methods. A new technique, based on the SIR model, and which allows one
to segment an object in an input image has also been recently proposed [12] [13].
This technique is complementary to the correlation methods and is analogous to
recently proposed approaches of active contours (snakes) [14] [15] [16]. However,
our proposed approach presents clear optimal properties in the context of statistical
estimation theory.

In this paper we propose a unified approach for the SIR models which we have
presented in the past. We will thus enlarge the field of applications of these tech-
niques in two directions. Firstly, we will be able to consider a large number of input
noise statistics which correspond to different physical situations. Secondly, we will
analyze these models in the general context of the estimation theory. This general
approach will enable us to include such applications as detection, recognition, lo-
cation, tracking, estimation of unknown parameters (for example the orientation
of the object) and shape estimation or, in other words, segmentation.

We will also show that this approach can enlarge the field of application of
optoelectronical correlators. As a matter of fact, SIR -based techniques consist of
a preprocessing of the analyzed image followed by correlations with binary masks.
A simple optoelectronical architecture could thus perform detection, tracking, es-
timation and segmentation with the same hardware, thus achieving efficient target
tracking or recognition.

This paper is organized as follows. In Section 2, we present the mathematical
SIR model and study its general solutions in the framework of the statistical theory
of estimation for probability density functions (pdf) which belongs to the exponen-
tial family. In Section 3, we analyze the optimal solutions when the unknown
parameters are estimated in the Maximum Likelihood (ML) sense for location ap-
plications. In Section 4, we discuss estimation problems and more particularly
segmentation applications. Finally, in Section 5, we illustrate on synthetic and
real -world images the efficiency of the proposed algorithms for location, segmenta-
tion and tracking applications.
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Application nature of 8

Detection

Discrimination

Location

Attitude estimation

Segmentation

0 or 1

discrete set

(x, y)

angles

Node coordinates

Table 1: Examples of application and nature of the parameter O.

2 The SIR model
2.1 Image model
The SIR model is a probabilistic framework to determine algorithms for detection,
recognition, location, parameter estimation or segmentation of an object in an
image. We assume that the observed scene is composed of two zones: the target
and the background. Furthermore, the target's and the background's gray level
are supposed to be unknown and we model their values as independent random
variables.

In the following mathematical developments, one -dimensional notations are
used for simplicity, and bold font symbols will denote N- dimensional vectors. For
example s = {Si i E [1, N] } denotes the input image composed of N pixels. For each
considered case, the purpose of the image processing algorithm is to estimate an un-
known parameter which will be denoted symbolically 8. For example, in detection
applications, B is a binary value, for recognition (or more precisely discrimination),
it is a value belonging to a discrete set, and for location, it is the position of some
characteristic points of the object (for example the center of gravity). For orien-
tation estimation, B is a set of possible angles. For segmentation purpose, B is the
shape of the object. In the latter case, if the shape is approximated by a polygonal
contour, B is the set of coordinates of the nodes of the polygon (see table 1).

Let w9 = { wni E [1, N] } denote a binary window function that defines a certain
location, orientation or shape for the target, so that we is equal to one within the
target and to zero elsewhere. Note that in the following, we will use the same
notation w9 for the previously defined binary function and for the set of pixels for
which this function is 1. Let us consider the different hypotheses Ho that consist
in assessing a binary window we to the target in the input image s, so that we can
write:

si = aiwe -F bi[1 - we] (1)
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where the target's gray levels a and the background noise b are random variables.
These random variables are characterized by their respective pdfs Pµ° [ai] and
Pµb [bi] where µa and Pb are the parameters of the pdfs which will be considered
as a priori unknown. These parameters can be scalars or vectors if more than one
scalar parameter is needed to determine the pdf.

Equation 1 with the pdfs Pµ° [ai] and Pµ6 [bi] is the image model. The parameter
of interest is B while the parameters pa and pb are nuisance parameters. We
will consider the maximum a posteriori (MAP) estimation of the parameter B.
The optimal estimate is thus obtained by maximizing the conditional probability
P[H9is]. This conditional probability can be obtained by using Bayes law [8]:

P[Hsl s] = P[sI He]P[He] /P[s] (2)

Considering that all hypotheses He are equiprobable, the MAP estimation of B is
equivalent to the Maximum likelihood estimation obtained by maximizing P[sIH9].
In the following, we will analyze the ML estimation since generalization to the MAP
estimate is obvious using Eq. 2. With the image model of Eq. 1, the likelihood is:

P[SI Ho' Pa, [b] = Pµ° [si] JJ Pµb [si] (3)
iEwe iE've

where we have explicitly denoted the dependence on the unknown parameters µa
and Pb . Please remember that we use the same notation w8 (or we) for binary
support functions and for the set of pixels for which the value of these functions is
1.

The question is now how to deal with the nuisance parameters /la and Pb in order
to express the likelihood as a function of the only parameter of interest B and of the
input image s. There exists several methods to deal with nuisance parameters and
the three most frequently used are the Maximum Likelihood (ML) estimation, the
Maximum A Posteriori (MAP) estimation and the marginal Bayesian approach.
With the marginal Bayesian and the MAP approaches, the nuisance parameters
are considered as random variables and prior density probability functions have to
be chosen [8, 17].

Let 7ra(pa) and 7rb(pb) denote these priors, the marginal Bayesian approach is
simple from a theoretical point of view and is based on the Bayes relation:

P[s = f f P[s1He,/la, fib]a(Pa )7b(llb)diladllb (4)
µ µb

where a symbolic notation has been used for the multidimensional integrals:

f f(fta)dlia = f f ... f .f (fal,/La2) ..., Pan )Clal
/; a1 N°2 °n.

and

ff (Pb)dPb = f f ...f f (Pbi, /162, .., ktbn)d/lbicittb2.diibn
/Lb Fb1 b2 {db,,

if Pa and ttb are n dimensional parameters. With Eq. 4 the likelihood P[sIHe] is
obtained and the problem is solved from a theoretical point of view.
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With the MAP approach, instead of eliminating the nuisance parameters as with
the marginal Bayesian approach, one considers estimates of their values. If we are
not interested in the nuisance parameter's values, this approach is suboptimal (see
[18] for a discussion in an analogous situation). Nevertheless, this method can be
of interest from a practical point of view, since it can be easier to determine the
MAP estimates of the nuisance parameters than integrating as in Eq.4. The MAP
estimates of the nuisance parameters are the values which maximize P[s, µa, 'Ho]
They are obtained by the following equation:

[µaMAP[s] libMAP[l S]] argmax P[sI HB, ha, hb7ra(lia)7b(hb) (5)
(//a µb)

where argmax (Z) is the value of the parameters y which maximizes Z. The
y

estimate of O can be obtained by maximizing the pseudo -likelihood:

BMAP argmax P [s,ltaMAP[S] µbMAP[s]1HB]

8

(6)

It is worth noting that since iiaMAP [s] and PbMAP [s] are functions of s, the con-
sidered criterion P [s, paMAP[s], pbMAP[s](HB] with the MAP approach is not a
likelihood, as it is the case with the marginal Bayesian approach (see Eq.4).

The ML method is analogous to the MAP approach from a technical point of
view but is not based on the modelization of the nuisance parameters as random
variables. The important consequence is that no prior has to be introduced as for
the marginal Bayesian and the MAP approaches. The ML estimates are given by:

[paML [s], pbML [S]] = argmax P[slHo, /ta, hb]
(ira, µb)

The estimation of O is obtained by maximizing the pseudo -likelihood:

BML = argmax P [slHe,/1,aML[s],IbML[S]]
O

L L

(7)

(8)

One can note that the ML approach is analogous to the MAP approach if a uniform
(also denominated non informative) prior for the nuisance parameters is considered.
The ML approach is simpler since no prior pdfs are needed (although the obtained
solution can be unstable [19]) and in the following we will mainly discuss results
for the ML solutions.

2.2 The exponential family
Members of the exponential family include the Bernoulli, Gamma, Gaussian, Pois-
son, Rayleigh and many other familiar statistical distributions [20]. These distri-
butions can be used to describe realistic situations. The case of binary images is
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Law pdf : P(x) Parameters : pu

Bernoulli pb(x) + (1- p)6(1- x) p

Gamma
_1

pexp[ -x /p]
pc-r(c)

Gaussian
2(x-m)2 m, o2exp[ ]o

Poisson EnEN 6(x - n)e -rrn! p

Rayleigh exp[- 2 -] p

Table 2: pdf of the considered laws of the exponential family and their corresponding
parameters. 6(x) is the Dirac distribution, N is the set of integers and n! = n(n - 1)..2.1.

simple to handle since the probability law for the gray levels can be described with
a Bernoulli pdf. It is also well known that at low photon levels, the noise present in
images is described by Poisson pdf (due to the discrete nature of the events, which
are the arrivals of photons on the sensor). This situation occurs for example, in
astronomical imagery when the exposure time of the sensor is short. Synthetic
Aperture Radar (SAR) intensity images are corrupted by a multiplicative noise,
also known as speckle [21], which can be described with Gamma pdf. This issue
has been widely studied over the past years and it is now well known that in order
to obtain efficient algorithms, the statistical properties of the speckle have to be
taken into account in the design of image processing algorithms (see [22], [23] and
references therein). Ultrasonic medical images correspond to amplitude detection
of the incident acoustic field and the speckle noise can be described with a Rayleigh
pdf [24]. Finally, we will also discuss the case of optronic images and the relevance
of normal laws when a whitening preprocessing is used [25].

Probability density functions (pdf) which belong to the exponential family are
defined by [20]:

PP (x) = tc(x) exp [a(µ) f (x) F Q(µ)] (9)

where p = [µl,µ2, ., µn]T is the vector of parameters of the pdf, i(x) is a scalar
function of x while a(µ) and f(x) are p- component vector functions of respectively
p and x. We summarize in table 2 the pdfs of the exponential family which will
be discussed in the following as well as the parameters which will be considered
unknown.

These pdf possess simple sufficient statistics [20]. Let us consider a sample Xu
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of nu random variables distributed with a pdf pµu (x) : xu = xl, x2, ..., xnu. A
sufficient statistic T[Xu] for pu is a function of the sample Xu that contains all the
information relevant to estimating the parameter pu in the ML sense. If the pdf
belongs to the exponential the likelihood is:

Pµ(Xu) = 11 ,K(xi) exp {a(p)f(xi) +,ß(p)} (10)

The ML estimate of pu is thus:

puML = argmax [fn- ii(xz) exp {a(p).f(xi) +ß(p) }j (11)

p

which can also be written:

with:

puML = argmax [exp {a(p).T[Xu] + nu ß(p)}]
/2

(12)

T[Xu] _> f (xi) (13)

which clearly defines the sufficient statistics of the exponential family. In table 3 we
provide the sufficient statistics for the pdfs of the exponential family which will be
discussed in the following. For that purpose, let us define Su the set of nu random
variables from which the parameters are inferred (i.e. the set of pixels from which
the unknown parameters are estimated). In particular na is the number of pixels
in w9 and nb is the pixel number in the background region we.

For the image processing problems we consider, the likelihood is a function of
w9. Let us denote L(s, w8) the likelihood obtained with the marginal Bayesian
approach or the pseudo likelihood obtained with the MAP or the ML approach,
and f(s, w9) its logarithm. It is easy to show the following property.

Property:
Whatever the adopted approach to deal with the nuisance parameters, the loglike-
lihood of an hypothesis Ho is:

with:

f[siHe] = -na Fa [T[Xa]] - nb Fb [T[Xb]] + G(s) (14)

T [Xa] = E f (si)
¡Ewe

T[Xb] _ , f (si)
iEwe

G(s) _ E ln[K(si)]
iEMB

where MB = w0 U *9 . Functions Fa and Fb depend on the considered pdf and
on the prior on the nuisance parameters for the marginal Bayesian and MAP ap-
proaches. They are equal in the case of a ML estimation of the nuisance parameters.
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discussed in the following. For that purpose, let us define Su the set of nu random 
variables from which the parameters are inferred (i.e. the set of pixels from which 
the unknown parameters are estimated). In particular na is the number of pixels 
in we and nb is the pixel number in the background region we.

For the image processing problems we consider, the likelihood is a function of 
wfl. Let us denote L(s,we) the likelihood obtained with the marginal Bayesian 
approach or the pseudo likelihood obtained with the MAP or the ML approach, 
and £(s,we) its logarithm. It is easy to show the following property.

Property:
Whatever the adopted approach to deal with the nuisance parameters, the loglike- 
lihood of an hypothesis He is:

4s|He] = ~na Fa [T[Xa]\ - nb Fb [T[Xfc]] + G(s) (14)

with:

T[x«] = 

T[xt] =

G(s) =

where Me = weljwe. Functions Fa

Ef^-) (15)
we

E (16)

E lnMs0]
: eM«

(17)

and Fb depend on the considered pdf and 
on the prior on the nuisance parameters for the marginal Bayesian and MAP ap­
proaches. They are equal in the case of a ML estimation of the nuisance parameters.
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Law Parameters : Sufficient statistics:T[xu.]

Bernoulli p = Ti/nu T1= EiES,. si

Gamma p = Tl/nu Ti = EiES,. Si

Gaussian m = Tl/nu

m2 _4_ a2 =T2/nu

Ti = EiES Si

T2 = EiES(si)2

Poisson p = Tl/nu T1 = EiES si

Rayleigh p = T2/nu T2 = EiES (si)2

Table 3: Mathematical expressions of the sufficient statistics for the parameters defined
in Table 2.

It is clear that the last term G(s) is independent of the hypotheses Ho if M8 is the
image to be analyzed or a subwindow in this image which is chosen independently
of H8. We will see in the following that the estimation of the likelihood of H9 is a
function of the input image s through the determination of the sufficient statistics.
In table 4, the expressions of the varying part of the loglikelihood defined in Eq.14
are provided when the nuisance parameters are estimated with the ML method.
We propose in the next sections to illustrate these concepts with different kinds of
applications.

3 Application to object location
3.1 Introduction and limitations of the ML approach
In order to perform the important task of detecting and locating a target appearing
on a random background, a pattern recognition system must discriminate between
the background and the target. The background can thus be considered as noise.
This noise is not additive, since it does not affect the target: it is said to be non -
overlapping. Classical linear filters have been shown to often fail in presence of such
noise [4], and an explanation of this phenomenon has been presented in [6]. Dif-
ferent techniques [26] [9] have been proposed in the past for detection and location
of a target with a known internal structure and an unknown uniform illumination
in presence of non -overlapping background noise. When the target's gray levels
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Law Parameters : Sufficient statistics:T[xu]

Bernoulli p = Ti/nu E =

Gamma P = Ti/nu = Eigs„ s»

Gaussian m — T\/nu ~ Eiesu s»

m2 + <t2 = T2/nu r2 = £i6S»2

Poisson p = T\/nu = EiGS„ Si

Rayleigh p = T2/nu T2 = EieSu(S*)2

Table 3: Mathematical expressions of the sufficient statistics for the parameters defined 
in Table 2.

It is clear that the last term G(s) is independent of the hypotheses Hg if is the 
image to be analyzed or a subwindow in this image which is chosen independently 
of Hg. We will see in the following that the estimation of the likelihood of Hg is a 
function of the input image s through the determination of the sufficient statistics. 
In table 4, the expressions of the varying part of the loglikelihood defined in Eq.14 
are provided when the nuisance parameters are estimated with the ML method. 
We propose in the next sections to illustrate these concepts with dilferent kinds of 
applications.

3 Application to object location
3.1 Introduction and limitations of the ML approach

In order to perform the important task of detecting and locating a target appearing 
on a random background, a pattern recognition system must discriminate between 
the background and the target. The background can thus be considered as noise. 
This noise is not additive, since it does not affect the target: it is said to be non­
overlapping. Classical linear filters have been shown to often fail in presence of such 
noise [4], and an explanation of this phenomenon has been presented in [6]. Dif­
ferent techniques [26] [9] have been proposed in the past for detection and location 
of a target with a known internal structure and an unknown uniform illumination 
in presence of non-overlapping background noise. When the target’s gray levels
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Law Fu (z) z

Bernoulli z ln[z] + (1 - z) ln[1 - z] z = Tl /nu

Gamma ln[z] z =Ti/n.

Gaussian ln[z] z = T2 /nu - [Tl /nu]2

Poisson -z ln[z] z =Ti/nu

Rayleigh ln[z] z = T2 /nu

Table 4: Mathematical expressions which define the varying part of the loglikelihod (see
Eq. 14) in terms of the sufficient statistics defined in Table 3. ln(z) is the neperian
logarithm.

are unknown it is necessary to introduce different approaches [10, 27, 25, 28, 11].
Such a situation can happen when the target is subject to sun reflections in op-
tical images, when temperature changes in infrared images or when only a shape
model is available for the location of the target in the input image. In this case,
with the proposed solutions [10, 27], the pixel values of both the target and the
background have been modeled as random variables with Gaussian pdfs but with
different parameters. The only a priori knowledge is thus the silhouette of the
target, which defines the frontier between the target and the background. These
models have been recently generalized to Gamma pdfs [27] and to binary images
[29]. We discuss in the following the general solution for the exponential family
which includes the previous cases as particular cases.

With the SIR approach the input image model is:

si = ai wi_a + bi wi_8 (18)

a and b represent the gray levels of, respectively, the target and the background
zone. The unknown parameter B is now simply the position of the object in the
scene. The ML solution for the estimation of the location B can be written (see
Eq. 14):

0ML = arg maxt[sHs]

= arg max -na Fa 1
na

E f(si) - nb Fb [1f(s)]] (19)
e nb

iEwB we
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Law Fu(z) z

Bernoulli z ln[z] + (1 — z) ln[ 1 — z] z-Txlnu

Gamma ln[z\ z - T\/nu

Gaussian ln[z] z = T2/nu - [Ti/nu]2

Poisson —z ln[z\ 3

E-
h

II

Rayleigh ln[z] 2 = T2/nu

Table 4: Mathematical expressions which define the varying part of the loglikelihod (see 
Eq. 14) in terms of the sufficient statistics defined in Table 3. ln(z) is the neperian 
logarithm.

are unknown it is necessary to introduce different approaches [10, 27, 25, 28, 11]. 
Such a situation can happen when the target is subject to sun reflections in op­
tical images, when temperature changes in infrared images or when only a shape 
model is available for the location of the target in the input image. In this case, 
with the proposed solutions [10, 27], the pixel values of both the target and the 
background have been modeled as random variables with Gaussian pdfs but with 
different parameters. The only a priori knowledge is thus the silhouette of the 
target, which defines the frontier between the target and the background. These 
models have been recently generalized to Gamma pdfs [27] and to binary images 
[29]. We discuss in the following the general solution for the exponential family 
which includes the previous cases as particular cases.

With the SIR approach the input image model is:

Si = a,- Wi-g + bi ibi-B (18)

a and b represent the gray levels of, respectively, the target and the background 
zone. The unknown parameter 6 is now simply the position of the object in the 
scene. The ML solution for the estimation of the location 0 can be written (see 
Eq. 14):

0ML = argmaxf[s|77s]
8

arg max8
-na Fa if- £ f(“‘>

,la . a
— ut, Fb

_ L !WS
(19)
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SCENE s

Subwindow M9
centered on pixel O

HYPOTHESIS 1

Target of
shape w in MB

HYPOTHESIS 2

No target in M°

Figure 1: Sketch of the two hypotheses considered in the MLRT scheme.

Here again, the functions Fa and Fb depend on the considered pdf and on the prior
on the nuisance parameters for the marginal Bayesian and MAP approaches but
are equal in the case of the ML estimation of these parameters. The mathematical
equations for Bernoulli, Gaussian, Gamma, Poisson and Rayleigh pdfs can be easily
obtained from tables 2, 3 and 4.

The main practical problem with the SIR models is that the input image is
assumed to be composed of two homogeneous random fields ai and bi . Further-
more, the random variables are assumed to be independently distributed. These
conditions may not be fulfilled in real -world images. We discuss in the following
two techniques in order to overcome these limitations.

3.2 The maximum likelihood ratio test (MLRT) approach
In the SIR image model, the background region *B, that is, the whole image but the
target, is considered to have homogeneous statistics. This is often a non -realistic
assumption since real -world backgrounds are in general better modeled with several
zones having different average values. In order to overcome this problem, we will
estimate the statistics in a small subwindow MB centered on the assumed target
location e (see Fig. 1). Indeed, if we consider a sufficiently small subwindow, the
hypothesis that the background is homogeneous becomes a better approximation.

In order to better understand the method we propose, let us temporarily set
aside the object location problem and let us consider the simpler problem of object
detection. It consists in determining if there is an object of shape w in the center
of the sub -image M9 or not. More precisely, we want to discriminate between the
two following hypotheses :

Hypothesis Ho : the window M9 contains only background noise b, so that

Vi E Me si = bi (20)

Hypothesis H1 : the target is present in the center of the window M9, so
that

`ái E M° si = wi-e ai + wi_B bi (21)
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HYPOTHESIS 1

Target of
shape w in

HYPOTHESIS 2

No target in M'

Subwindow ]Vr 
centered on pixel 0

SCENE s

Figure 1: Sketch of the two hypotheses considered in the MLRT scheme.

Here again, the functions Fa and Ft, depend on the considered pdf and on the prior 
on the nuisance parameters for the marginal Bayesian and MAP approaches but 
are equal in the case of the ML estimation of these parameters. The mathematical 
equations for Bernoulli, Gaussian, Gamma, Poisson and Rayleigh pdfs can be easily 
obtained from tables 2, 3 and 4.

The main practical problem with the SIR models is that the input image is 
assumed to be composed of two homogeneous random fields a,- and 6,. Further­
more, the random variables are assumed to be independently distributed. These 
conditions may not be fulfilled in real-world images. We discuss in the following 
two techniques in order to overcome these limitations.

3.2 The maximum likelihood ratio test (MLRT) approach

In the SIR image model, the background region we, that is, the whole image but the 
target, is considered to have homogeneous statistics. This is often a non-realistic 
assumption since real-world backgrounds are in general better modeled with several 
zones having different average values. In order to overcome this problem, we will 
estimate the statistics in a small subwindow centered on the assumed target 
location 9 (see Fig. 1). Indeed, if we consider a sufficiently small subwindow, the 
hypothesis that the background is homogeneous becomes a better approximation.

In order to better understand the method we propose, let us temporarily set 
aside the object location problem and let us consider the simpler problem of object 
detection. It consists in determining if there is an object of shape w in the center 
of the sub-image Me or not. More precisely, we want to discriminate between the 
two following hypotheses :

• Hypothesis Hq : the window Me contains only background noise b, so that

Vi e M* Si = bi (20)

• Hypothesis Hi : the target is present in the center of the window Ms, so 
that

(21)Vi e M* Si = Wi~g a,- + Wi-0 bi
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Note that in this section, we will denote the part of the complementary of w8
belonging to M8. In other words, Me w8 + *8.

A very classical method for determining the best choice between these two
hypotheses is the maximum -likelihood ratio test [30]. It consists in computing
the likelihoods L(Ho, 0) and L(H1 i 0) of both hypotheses, and taking their ratio
7-(0) = L(H1i 0) /L(Ho, 0). Then select a threshold value ro, and perform the
following test :

if T(0) > To , there is a target in the center of M8,

else there is no target.

The value of the threshold To sets a compromise between the probability of detection
and the probability of false alarm. Using this method, we can determine if the
target is present or not at each location O. If there may be several targets in the
image, it is thus possible to determine their locations.

Let us now return to the problem of object location, which is slightly different :
We assume that we know that there is only one target in the image (which can
be the case in tracking applications for example), and we want to determine its
location. In order to do so, we can extend the previously described detection
algorithm to a location algorithm by choosing as the estimate of the target location
the position which maximizes r(0). In other words, the estimated location will be :

0MLRT = arg max r(0) (22)

In the following, we will call this estimation approach the "maximum likelihood
ratio test" (MLRT). This procedure is a heuristic extension of the optimal detection
algorithm. Note that similar procedures have been used for locating edges in optical
images (with Gaussian grey level statistics) [31] and in Synthetic Aperture Radar
images (with Gamma grey level statistics) [22].

We shall now specify the expression of the likelihood ratio T(0) for a SIR image
belonging to the exponential family:

ln[T(0)] _ -na Fa[ 1

na f (si)] - nb Fb[1 f (si)] (23)nb
e iEwe

+n, Fb[-1 E f (si)] (24)nc
iEMe

where na is the number of pixels of the scanning subwindow MB and thus na =
na + nb. Here again, the functions Fa and Fb are dependent of the considered
pdf and the prior on the nuisance parameters for the marginal Bayesian and MAP
approaches but are equal in the case of a ML estimation of these parameters.

We now specialize Eq. 24 to particular pdf's belonging to the exponential family
when the ML estimation of the nuisance parameters is considered. For simplicity
reasons, let us introduce the following notations:

t(ta) )Q(9) = l/na /e lsi
t(ib)(B) = 1/nb EiEwe (.901 (25)

tec)(B) = 1incEtiEMe(si)C
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Note that in this section, w9 will denote the part of the complementary of we 
belonging to M*. In other words, = we + we.

A very classical method for determining the best choice between these two 
hypotheses is the maximum-likelihood ratio test [30]. It consists in computing 
the likelihoods L(Hq,9) and L(Hi,6) of both hypotheses, and taking their ratio 
t{9) — L{H\,9)/L(Hq,9). Then select a threshold value tq, and perform the 
following test :

• if t(6) > To , there is a target in the center of M61,

• else there is no target.

The value of the threshold To sets a compromise between the probability of detection 
and the probability of false alarm. Using this method, we can determine if the 
target is present or not at each location 6. If there may be several targets in the 
image, it is thus possible to determine their locations.

Let us now return to the problem of object location, which is slightly different : 
We assume that we know that there is only one target in the image (which can 
be the case in tracking applications for example), and we want to determine its 
location. In order to do so, we can extend the previously described detection 
algorithm to a location algorithm by choosing as the estimate of the target location 
the position which maximizes t(9). In other words, the estimated location will be :

9mlrt = argmaxr(0) (22)
6

In the following, we will call this estimation approach the ’’maximum likelihood 
ratio test” (MLRT). This procedure is a heuristic extension of the optimal detection 
algorithm. Note that similar procedures have been used for locating edges in optical 
images (with Gaussian grey level statistics) [31] and in Synthetic Aperture Radar 
images (with Gamma grey level statistics) [22].

We shall now specify the expression of the likelihood ratio t(9) for a SIR image 
belonging to the exponential family:

ln[r(e)] = -naFa[— £ f(s,-)] - nb Fb[- £ f(*<)] (23)
na As nb -T-*

+nc Fb[- V f(«,■)] (24)
Tlc • € M*

where nc is the number of pixels of the scanning subwindow M0 and thus nc = 
na + nb. Here again, the functions Fa and Fb are dependent of the considered 
pdf and the prior on the nuisance parameters for the marginal Bayesian and MAP 
approaches but are equal in the case of a ML estimation of these parameters.

We now specialize Eq. 24 to particular pdf’s belonging to the exponential family 
when the ML estimation of the nuisance parameters is considered. For simplicity 
reasons, let us introduce the following notations:

4a)(0) = iK£iew*(*.f
tf]{d) = l/nbJ2i€*e(si)1 
#>(*) = l/nc£i6M.(*)‘

(25)
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where .e = 1 or 2.
In the Bernoulli case, Eq. 24 becomes

ln[r(0)] = -na It(ia)(8) in[t(ia)(0)] + (1- t(ia)(0)) in[1-t(ia)(0)1]

-nb t(16)(0) in[t(ib)(a)] + (1 - t(lb)(0)) ln[1 - t(ib)(a)] (26)

"t(ic)(e) in[t(»(8)] + (1- 4c) (0)) in[1 tj°)(a)]+nc

in the Gaussian case,

in[r(8)] = -na in Eta) (0) - (t(,a)(9))21 - nb in [t(b)(0) - (1(1b)(0))2]

+nc ln [12`í(B) - (tic) (0)2] ,

in the Gamma case,

1n[r(8)] = -nain [t(ia)(B)] - nbin [4° (0)] + nein [t(I`) (B)] ,

in the Poisson case

ln[r(8)] = na t(ia) (9) ln [t(la) (0)] + nb t(ib) (0) in [tibi (0)]

-na t(1c) (9) ln [t(i`) (0)] ,

and in the Rayleigh case

ln[r(8)] = -nain [tza) (0)] - nbin [4b) (9)] + nain [tzc) (0)]

(27)

(28)

(29)

(30)

3.3 The whitening process
In some real -world images, the statistics of both the target and the background
cannot be approximated with good precision with uncorrelated random fields. In
these situations, the SIR filter is then suboptimal and can fail. In figure 2, two
scenes and the maximum of each line of their respective generalized correlation
planes obtained with the SIR technique (i.e..e(sjH9)) are shown. The maximum of
the correlation plane represents the estimated location of the target. In scene (a),
the pdf's of both the target and the background are white and Gaussian whereas
those of scene (b) are also Gaussian but correlated. One can note that the SIR
algorithm adapted to white Gaussian statistics fails on scene (b) whereas it is able
to locate the target on scene (a).

We want to design an optimal algorithm for the location of a random correlated
target appearing on a random correlated background. The main problem consists
in finding texture models that characterize real situations and for which the optimal
solution is mathematically simple. Such a method has been recently designed using
the same random Markov field model for both the target and the background [32].
This case represents a difficult, but particular situation.

In this subsection, we propose to apply a preprocessing to the input image in
order to obtain an image with white Gaussian textures and then to apply the SIR

204 / Critical Reviews Vol. CR74

where l— 1 or 2.
In the Bernoulli case, Eq. 24 becomes

Iti[t(6)\ = —na 

-nb 
+nc

t[a)(0) in[t[a\e)} + (i-t{a\e)) in[i-t[a\e)}

4'V) ln{t[b)(8)} + (1 - t{b\9)) ln[\ - 46)((?)]’ 

t[c\9) ln[t{c)(9)} + (1 - ^(0)) /n[l - t[c)(8)}
(26)

in the Gaussian case,

ln[r(e)} = —na In [t{2a){6) - (t^^))2] - nb In \t(b) {9) - (t[b)(6)): 

+nc In [4C)(0) - (4CV))2] -

in the Gamma case,

ln[r(8)\ = —naln ~ nbln + ncln >

in the Poisson case

ln[r(6»)] = na t[a) (9) In + nb t[b\d) In ^6)(^)

-nc t[c\9) ln^t[c\9)j ,

and in the Rayleigh case

ln[r(9)] = -njn 4^(0)] ~ nbln [46^)] + nJn [4C''(^)

(27)

(28)

(29)

(30)

3.3 The whitening process

In some real-world images, the statistics of both the target and the background 
cannot be approximated with good precision with uncorrelated random fields. In 
these situations, the SIR filter is then suboptimal and can fail. In figure 2, two 
scenes and the maximum of each line of their respective generalized correlation 
planes obtained with the SIR technique (i.e. £(s|He)) are shown. The maximum of 
the correlation plane represents the estimated location of the target. In scene (a), 
the pdf’s of both the target and the background are white and Gaussian whereas 
those of scene (b) are also Gaussian but correlated. One can note that the SIR 
algorithm adapted to white Gaussian statistics fails on scene (b) whereas it is able 
to locate the target on scene (a).

We want to design an optimal algorithm for the location of a random correlated 
target appearing on a random correlated background. The main problem consists 
in finding texture models that characterize real situations and for which the optimal 
solution is mathematically simple. Such a method has been recently designed using 
the same random Markov field model for both the target and the background [32], 
This case represents a difficult, but particular situation.

In this subsection, we propose to apply a preprocessing to the input image in 
order to obtain an image with white Gaussian textures and then to apply the SIR
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(a)

(b) (c)

(d) (e)

Figure 2: (a) : Reference shape. (b) : Example of a scene with white Gaussian textures
for the target and the background. The shape of the target is the reference shape in
(a). (c) : Example of a scene with correlated Gaussian textures for the target and the
background. The shape of the target is the reference shape in (a). (d) : Result of
processing (b) with the SIR algorithm adapted to white Gaussian statistics. (e) : Result
of processing (c) with the SIR algorithm adapted to white Gaussian statistics. Note :
(d) and (e) are plots of the maximum of each line of the output plane of the considered
method.
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Figure 2: (a) : Reference shape, (b) ; Example of a scene with white Gaussian textures 
for the target and the background. The shape of the target is the reference shape in 
(a), (c) ; Example of a scene with correlated Gaussian textures for the target and the 
background. The shape of the target is the reference shape in (a), (d) : Result of
processing (b) with the SIR algorithm adapted to white Gaussian statistics, (e) : Result 
of processing (c) with the SIR algorithm adapted to white Gaussian statistics. Note : 
(d) and (e) ere plots of the maximum of each line of the output plane of the considered 
method.
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method which is optimal in that case. However, as soon as the textures of both the
target and the background are strongly correlated, the preprocessing introduces a
third region in the preprocessed image, which characterizes the frontier between
the target and the background. Following reference [25] we will thus discuss how
to model this region with a white Gaussian random field and we design a SIR filter
that takes into account the three regions (i.e. the background, the target and the
frontier).

The Fourier Transform of s is denoted s (or s(v) at frequency v), z* is the
complex conjugate value of z and Izi its modulus. We define the whitening filter
in the Fourier domain by :

1 (31)(v)
e +

where e is a small positive constant introduced as a regularization parameter which
avoids divergence when 14v)j is close or equal to zero. The Fourier Transform v
of the preprocessed image y is thus:

v(v) = it(v)s(v). (32)

One can note that since s and h are real, y is also real. It is easy to show that the
square modulus of v is approximately constant. We can conjecture that the pixels
of the preprocessed image z are approximately Gaussian uncorrelated variables. In
figure 3, we show a target with a correlated texture which appears on a random
correlated background and the obtained preprocessed image. One can show that
describing the pixel values of the preprocessed image as Gaussian random variables
is a good approximation. If we model the preprocessed image with two independent
regions and if the nuisance parameters are estimated in the ML sense, the SIR
method leads to (see Eq. 14):

£[sjHo] = -na In [4a)(0) - (tia) (9))z ] nb In [i(2b)(9) (tibl (B))2] (33)

where

téa)(0)
= a E lzi)Z

iebl(B) =

¡Ewe

E ¡zi )Z

nb iE.ael
(34)

where £ = 1 or 2.
However, as one can remark in figure 3, the preprocessing can introduce three

regions in the preprocessed image. Indeed, as soon as the textures are strongly
correlated, a frontier appears between the target and the background.

Let f denote that frontier (and respectively a the target and b the background)
and let wf (resp. wa and wb) define the new disjoint window functions composed
of n f (resp. na and nb) pixels so that w2 (resp. wd and wb) is equal to one within
the frontier (resp. the target and the background) and to zero elsewhere when
the target is located at the center of the image. We thus propose to describe the
preprocessed image z in the following way [33] :

zi = aiw;_B + fiw1 e + biwb-e (35)
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method which is optimal in that case. However, as soon as the textures of both the 
target and the background are strongly correlated, the preprocessing introduces a 
third region in the preprocessed image, which characterizes the frontier between 
the target and the background. Following reference [25] we will thus discuss how 
to model this region with a white Gaussian random field and we design a SIR filter 
that takes into account the three regions (i.e. the background, the target and the 
frontier).

The Fourier Transform of s is denoted s (or s(v) at frequency v), z* is the 
complex conjugate value of z and |z| its modulus. We define the whitening filter 
in the Fourier domain by :

h(v) 1
e + |s(«/)| (31)

where e is a small positive constant introduced as a regularization parameter which 
avoids divergence when |s(«/)| is close or equal to zero. The Fourier Transform v 
of the preprocessed image v is thus:

v{v) = h(^)s(l/). (32)

One can note that since s and h are real, v is also real. It is easy to show that the 
square modulus of v is approximately constant. We can conjecture that the pixels 
of the preprocessed image z are approximately Gaussian uncorrelated variables. In 
figure 3, we show a target with a correlated texture which appears on a random 
correlated background and the obtained preprocessed image. One can show that 
describing the pixel values of the preprocessed image as Gaussian random variables 
is a good approximation. If we model the preprocessed image with two independent 
regions and if the nuisance parameters are estimated in the ML sense, the SIR 
method leads to (see Eq. 14):

£[s\Hg} = -na\n - (t[a\9))2 — rib In 46)W-(<16)W)2 (33)

where

‘T’w = -£>>'
na (,

<?’<*> = J-EM'
nb r -fi

(34)

where l = 1 or 2.
However, as one can remark in figure 3, the preprocessing can introduce three 

regions in the preprocessed image. Indeed, as soon as the textures are strongly 
correlated, a frontier appears between the target and the background.

Let f denote that frontier (and respectively a the target and b the background) 
and let wf (resp. wa and wb) define the new disjoint window functions composed 
of nj (resp. na and rib) pixels so that wj (resp. wf and wf ) is equal to one within 
the frontier (resp. the target and the background) and to zero elsewhere when 
the target is located at the center of the image. We thus propose to describe the 
preprocessed image z in the following way [33] :

Zi - aiwf_s + fiw{_9 + biwf_e (35)
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(a) (b)

Figure 3: (a) : Example of a scene with strongly correlated Gaussian textures for both
the target and the background. (b) : Whitened version of (a).

when the target is supposed to be centered on the Bth pixel of the image.
Using an analogous approach as previously, we can design a SIR filter that takes

into account three regions. This leads to :

f[sI He] = -na In [4a)(9) - (4a) (OW] - nb In K6)(0) - (4b)(9))2]

-n f In [t2f)(o) - (4.0 (0))2] (36)

where t4ai (o), 4b) (0) and i(/)(19) are defined as is Eq.34. All these quantities can
be determined by correlating binary masks with images z and z2 [25]. They can
be obtained with a simple optoelectronical architecture or using FFT algorithm
applied to the images zi and zi2.

3.4 The implementation issue
An interesting point is that t[s1Ho] in the standard SIR approach and ln[r(o)] in
the MLRT approach can easily be rewritten using correlation operations. Let us
consider the MLRT approach, and let [f *g]i denote the correlation between f and
9:

[f *9]i = fi+f9f
J

(37)

and let w = w °. Eq. 25 becomes :

ta)(0) = [w * (s)e]B

46)(0) = [w * (s)P]e (38)

t(ta) (B) = ,mac [M * (s)11e

where we remember that M = w w. Since the most intensive computations are
involved in t(7) (0) with u = a, b, c or f , this new formulation is very attractive be-
cause it is closely connected to the detection architecture described in [10]. Indeed,
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the detection and location steps require the same correlation functions. A simple
optoelectronical architecture could thus perform the detection and /or location with
this kind of hardware.

4 Application to segmentation
4.1 Introduction
An important goal of computational vision and image processing is to automatically
recover the shape of objects from various types of images. Over the years, many
approaches have been developed to reach this goal and in this section, we focus
on the segmentation of a unique object in the scene. The unknown parameter O is
now the shape of the object in the scene.

A classical approach consists in detecting edges and linking them in order to
determine the shape of the object presents in the image. However this approach
does not use the knowledge that the object is simply connected. On the other hand,
deformable models (also called "snakes ") incorporate knowledge about the shape
of the object from the start. Broadly speaking, a snake is a curve which has the
ability to evolve (under the influence of a mathematical criterion) in order to match
the contour of an object in the image. The first "snakes" [14] were driven by the
minimization of a function in order to move them towards desired features, usually
edges. This approach and its generalization [34] [35] [36] are edge -based in the
sense the information used is strictly along the boundary. They are well adapted
to a certain class of problems, but they can fail in presence of strong noise.

The SIR -based snake we will describe in the following belongs to the deformable
template methods, which are parametric shape models with relatively few degrees
of freedom. They constitute another interesting approach to recover the shape of
an object [37] [38] [16]. The template is matched to an image, in a manner similar
to the snake, by searching the value of a parameter vector O (i.e. the node positions)
that minimizes an appropriate mathematical criterion. One can cite for example
strategies based on the consideration of the inner and the outer regions defined by
the snake, which have been recently investigated [15] [16] [39] [40]. It is interesting
to note that a statistical processing method can take full advantage of many suitable
descriptions of the measured signals (see for example [41] [12] [24] [42] [43]).

The SIR approach allows one to determine this appropriate criterion. First,
we generalize the approaches proposed in [12] [42] [44] to different statistical laws
which belong to the exponential family and which are well adapted to describe
physical situations. This technique is actually an extension of the optimal detection
approach introduced in [10] and generalized in the previous sections.

4.2 The SIR snake model
The purpose of segmentation is therefore to estimate the most likely shape w9 for
the target in the scene. Note the difference with the optimal location problem of
section 3 where the silhouette of the target was known whereas its position had to
be found. To achieve the shape estimation issue, we use a k -node polygonal active
contour that defines the boundary of the shape. w9 is now a polygon- bounded
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support function, one -valued on and within the snake and zero -valued elsewhere
and 9 is the set of the positions of each node of the contour. Let us consider
the different hypotheses Ho that consist in assessing a shape w8 to the target by
assessing a position to each node of the contour, so that we can write:

si = atiwe + b{1 - we] (39)

The optimal choice for w is the one which maximizes the conditional probability
P[Heis]. The ML estimation of the shape (i.e. 9) is obtained by maximizing the a
priori probability P[sIHs]; which corresponds to the likelihood of the hypothesis.

Under the previous assumptions we can now specify the expression of the like-
lihood f[sI Ho] for a SIR image which belongs to the exponential family.

e[s1He] = -na Fa [7.-1-
a
E f(si) - nb Fb E f(si) (40)
iEwe

nb
iEwe

Here again, the functions Fa and Fb are dependent of the considered pdf and the
prior on the nuisance parameters for the marginal Bayesian and MAP approaches
but are equal in the case of a ML estimation of these parameters.

We now illustrate this result for some particular cases of the pdf family and we
use the same notations as in Eq. 25.
In the Bernoulli case, Eq. 40 becomes :

e[sIHs] = -na t(a) (0) in[Í(a) (0)] + (1 - t(a) (0)) ln[1 4'1)09)1]

-nb .t(19)(9) in[ttb)(0)] + (1 - 4b)(9)) /n[1 - tsb)(0)]] ,

in the Gaussian case,

£[sIHe] = -na ln Eta) (0) - (t(a)(0))2] - nb ln [Í2b)(9) - (t»(0))2] , (42)

in the Gamma case,

£[s1H9] = -naln [t(ia)(9)] - nbin [t(b)(9)1 , (43)

(41)

in the Poisson case,

£[siHe] = na t(ia)(9) ln [t(a)(9)] + nb Í(b)(9) ln [t(b)(0)1 , (44)

and in the Rayleigh case,

k[sjHe] _ -na ln [t(2a)(0)1 - nb ln [Í2b)(9)] (45)

One can note that the whitening process introduced in the previous section can
be also used in order to obtain white random fields well described with Gaussian
pdf [13].
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4.3 The implementation issue
The window function we that optimizes the criterion L[siH9] realizes the ML opti-
mal segmentation of the target in the scene. The technical problem is thus to find
the value of O which maximizes 4W/el (also denoted 1(9) in the following) :

BML - argmax t[siHe]
8

(46)

We use a stochastic iterative algorithm to perform the optimization of l(B)
and thereby the segmentation. At each iteration m of the process, carry out the
following steps:

Consider a new shape 9m +1 by randomly moving a node of the polygon. This
consequently defines a new window function wem +1

Accept this new shape if l(0m +1) > l(0m) and refuse it otherwise.

This process is continued until 1(9') does not increase anymore.
An interesting point is that 1(9m) can easily be rewritten using correlation

operations. Let [ f * g]o denote the central value of the correlation between f and
9:

One thus has:

[f *9]o =Efi 92

t(tQ) (B) = na [w * (S)t]o

tpb) (8) = ne [w * (s)e]o

(47)

(48)

Note the similarity between Eqs. 48 and 38. The detection, location and segmenta-
tion steps require the same correlation functions. A simple optoelectronical archi-
tecture could thus perform these tasks with the same hardware. As will be shown
in Section 5.5, joint utilization of location and segmentation algorithms enables us
to perform efficient target tracking.

4.4 Generalization of the SIR segmentation approach
Constrained deformation

In the previous section, the shape of the snake was not constrained, and could
converge to any arbitrary polygon. In some applications, one may have some a
priori knowledge about the object's shape, and thus constrain the evolution of the
snake to a smaller class of possible shapes. This enables faster and more robust
segmentation.

To formalize this approach, let 9 be the node locations and let us consider a
set of transformations Ka (B) with a E S where S is the set of possible values of a.
In the case of the location task, the transformation is a translation of parameter a
and thus:

Ka(B) = O + a (49)

wi-K(9) = wi-9-a (50)
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More interesting can be the case of in -plane rotation Ra since the estimation of
the target orientation can be performed with a more efficient technique than the
general snake algorithm of the previous subsections. Indeed, instead of randomly
moving the nodes one can select among all the rotated versions of w the angle a
which maximizes the likelihood:

aML = argmax P[sIHRa(e)]
a E S

(51)

This concept can be generalized to other transformations such as isotropic or
anisotropic scaling.

Recognition

Let us assume that the purpose is to recognize the object or, in other words, to
discriminate between different classes. For example, one can imagine that the
purpose is to determine whether the target is a car, a truck or a bus. One can now
consider that O belongs to the discrete set D of the possible classes of objects. For
the above considered example one has D = {car, truck, bus }. The recognition is
thus obtained with:

aML = argmax 2[sIHa] (52)
ctED

where t[sIHc] is a nonlinear function of the intercorrelation of s, and of (s 02 with
the shapes wa of the reference objects.

5 Simulation results
We propose in this section some numerical simulations to illustrate the performance
of the location and segmentation algorithms described in this paper. We consider
different noise statistics belonging to the exponential family and demonstrate the
efficiency of the proposed algorithms on synthetic and real -world images. We also
show how the location and the segmentation algorithms can be used together to
efficiently track objects in images sequences.

5.1 Binary images
The image in figure 4.a represents an object (a bird) appearing against a complex
background. Suppose that this image is to be processed with an optical correlator in
which the input image is displayed on a binary spatial light modulator. We need to
binarize the image before processing it. In many instances, it has been noticed that
it was more efficient to edge- enhance an image before binarizing it ; this operation
increases its contrast, making it easier to find a good threshold. The result of
edge- enhancing and binarizing figure 4.a is represented in figure 4.b. Note that in
binarized real -world images, the background noise is often non -homogeneous. For
this type of images, the MLRT is thus more efficient than the ML algorithm [29].
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The result of processing figure 4.b with the MLRT algorithm adapted to Bernoulli
statistics is shown in Figure 4.d.

By looking more accurately at the binarized image in Figure 4.b, we can see
that it is very noisy. This is because a low threshold has been chosen. It is better
to have a low threshold since almost all the information -carrying edges are included
in the images. Very little information is thus lost, but the drawback is that a lot
of spurious edges remain after the binarization step. These edges are in general
non -homogeneously distributed over the image, and this makes it important to
use location algorithms robust to non -homogeneous background noise, such as the
MLRT.

Figure 5 represents segmentation results on two binarized real -world images
corrupted with additive Gaussian noise. The images in the left column display the
initial shape of the snake. The images in the right column represent the snake after
convergence. We can see that the searched shape has been correctly segmented.
Note that the initial shape does not need to be very close to the true one for the
snake to converge properly. This robustness to snake shape initialization is an
important feature of the proposed algorithm in real -world applications.

5.2 Speckled images
Figure 6.a displays two tank- shaped small targets (78 pixels) appearing on a non -
homogeneous background with exponential statistics. This background has been
generated with the method described in Ref. [29], where we have replaced the
Bernoulli variates with exponential variates. The tank in the upper right quadrant
has been rotated by 10° with respect to the reference object. The result of pro-
cessing the scene with the MLRT algorithm adapted to speckle statistics appears
in Figure 6.b. We can see that the MLRT, as most correlation -based algorithms,
is robust to small deformations of the target with respect to the reference object.

5.3 Low flux images
Figure 7.a displays a real -world image containing a boat appearing against a moun-
tain background with atmospheric blurring. Figure 7.b represents the same image
synthetically perturbed with Poisson noise, simulating for example photon -limited
imaging. Figure 7.d shows the result of processing this image with the MLRT
algorithm adapted to Poisson noise.

Figure 8 also represents a real image synthetically perturbed with some amount
of Poisson noise. The car is segmented using the snake energy adapted to Poisson
noise.

5.4 Optronic images
Figure 9.a is a synthetic image representing an airplane on a contrasted urban
background. The whole scene is severely blurred. Note that the target gray levels
are nonuniform. They are not known a priori, since the only information used
by the algorithm is the binary shape displayed in figure 9.c. Fig 9.b represents
a whitened version of the scene. It can be shown that the statistics of the gray
levels in the whitened scene are approximately uncorrelated and Gaussian. The
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(a)

(c) (d)

Figure 4: (a) : Synthetic scene with an object (eagle) appearing on an urban background.
The whole scene is corrupted with white Gaussian additive noise. (b) : Scene edge
enhanced with Sobel operator and binarized. (e) : Reference object w. (d) : Result of
processing (b) with the MLRT algorithm adapted to Bernoulli statistics. The reference
object was (c), and the window M was constructed by dilating (c) two times with a 3 x 3
structuring element.
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Figure 4: (a) : Synthetic scene with an object (eagle) appearing on an urban background. 
The whole scene is corrupted with white Gaussian additive noise, (b) : Scene edge 
enhanced with Sobel operator and binarized, (c) : Reference object w. (d) ; Result of 
processing (b) with the MLRT algorithm adapted to Bernoulli statistics. The reference 
object was (c), and the window M was constructed by dilating (c) two times with a 3 x 3 
structuring element.
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(a) (b)

(c) (d)

Figure 5: (a) and (c) : Binarized versions of gray level real -world scenes. The white
rectangle represents the initial shape of the snake. (b) and (d) : Snake after convergence.

(a) (b)

Figure 6: (a) : Scene containing the searched object in the middle, and a rotated version
(10 °) of the searched object in the upper right quadrant. The background is nonhomo-
geneous with exponential statistics. (b) : Above : Reference object w. Below : Result
of processing (a) with the MLRT algorithm adapted to Gamma statistics. The window
M was constructed by dilating the reference object three times with a 3 x 3 structuring
element.
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Figure 5: (a) and (c) : Binarized versions of gray level real-world scenes. The white 
rectangle represents the initial shape of the snake, (b) and (d) : Snake after convergence.

Figure 6: (a) : Scene containing the searched object in the middle, and a rotated version 
(10°) of the searched object in the upper right quadrant. The background is nonhomo- 
geneous with exponential statistics, (b) ; Above : Reference object w. Below : Result 
of processing (a) with the MLRT algorithm adapted to Gamma statistics. The window 
M was constructed by dilating the reference object three times with a 3 x 3 structuring 
element.
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(a) (b)

(c) (d)

Figure 7: (a) : Real -world gray level scene. (b) : Scene (a) perturbed with Poisson noise
(c) : Reference object w. (d) : Result of processing (b) with the MLRT algorithm adapted
to Poisson statistics. The reference object was (c), and the window M was constructed
by dilating (c) three times with a 3 x 3 structuring element.

(a) (b)

Figure 8: (a) : Real -world scene synthetically corrupted with Poisson noise. The white
rectangle represents the initial shape of the snake. (b) : Snake after convergence.
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Figure 7: (a) ; Real-world gray level scene, (b) : Scene (a) perturbed with Poisson noise 
(c) : Reference object w. (d) : Result of processing (b) with the MLRT algorithm adapted 
to Poisson statistics. The reference object was (c), and the window M was constructed 
by dilating (c) three times with a 3 x 3 structuring element.

Figure 8: (a) : Real-world scene synthetically corrupted with Poisson noise. The white 
rectangle represents the initial shape of the snake, (b) ; Snake after convergence.

Proc. of SPIE Vol. 10296  102960C-23



216 / Critical Reviews Vol. CR74

(a) (b)

(c) (d)

Figure 9: (a) : Synthetic scene with an airplane appearing on an urban background. The
whole scene is blurred and corrupted with white Gaussian additive noise. (b) : Whitened
version of scene (a). (c) : Reference object w. (d) : Result of processing (b) with the
ML algorithm adapted to Gaussian statistics. The reference object was (c).

ML algorithm adapted to white Gaussian statistics is applied to the whitened
image. The obtained result is displayed in figure 9.d. We can see that we are able
to correclty locate the target despite its low contrast and the severely cluttered
background.

Figure 10.a also represents an airplane on a contrasted urban background.
The whole image is severely blurred. This means that edge -based snake tech-
niques [14, 34, 35, 36] would not be efficient, since the edges between the target
and the background are not sharper than the edges internal to the background.
The proposed region -based snake method, which relies on all target and back-
ground pixels is able to segment the image, as can be seen in figure 10.b. Note that
the snake has been applied to the whitened version of figure 10.a.

Figure 10.c represents a real -world image of a car on a road. Here again, the
snake is applied to the whitened version of the scene. Note that the the snake
has correctly converged although its initial shape (see figure 10.c) was very differ-
ent from the true one. This is a further proof of the robustness of the proposed
algorithm to the initial shape of the snake.
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Figure 9: (a) : Synthetic scene with an airplane appearing on an urban background. The 
whole scene is blurred and corrupted with white Gaussian additive noise, (b) ; Whitened 
version of scene (a), (c) ; Reference object w. (d) : Result of processing (b) with the 
ML algorithm adapted to Gaussian statistics. The reference object was (c).

ML algorithm adapted to white Gaussian statistics is applied to the whitened 
image. The obtained result is displayed in figure 9.d. We can see that we are able 
to correclty locate the target despite its low contrast and the severely cluttered 
background.

Figure 10.a also represents an airplane on a contrasted urban background. 
The whole image is severely blurred. This means that edge-based snake tech­
niques [14, 34, 35, 36] would not be efficient, since the edges between the target 
and the background are not sharper than the edges internal to the background. 
The proposed region-based snake method, which relies on all target and back­
ground pixels is able to segment the image, as can be seen in figure 10.b. Note that 
the snake has been applied to the whitened version of figure 10.a.

Figure lO.c represents a real-world image of a car on a road. Here again, the 
snake is applied to the whitened version of the scene. Note that the the snake 
has correctly converged although its initial shape (see figure 10.c) was very differ­
ent from the true one. This is a further proof of the robustness of the proposed 
algorithm to the initial shape of the snake.
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(a) (b)

(c) (d)

Figure 10: (a) and (c) : Synthetic (a) and real -world (c) scenes. The white rectangle
represents the initial shape of the snake. (b) and (d) : Snake after convergence (on the
whitened version of the corresponding scene)
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Figure 10: (a) and (c) : Synthetic (a) and real-world (c.) scenes. The white rectangle 
represents the initial shape of the snake, (b) and (d) : Snake after convergence (on the 
whitened version of the corresponding scene)
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5.5 Applications to tracking
We now illustrate the feasability of using cooperatively location and segmentation
approaches to achieve efficient target tracking on image sequences, even if the shape
of the target changes during the sequence. Assume that on the image acquired
at time t, the target has been segmented using the proposed snake method. This
segmentation produces a binary reference shape that enables us to locate the target
in the image acquired at time t +1, e.g. with the MLRT algorithm. This is possible
since the MLRT is robust to limited deformation of the target with respect to the
reference object. It can thus locate the target even if its shape has slightly changed
compared to the previous frame. We then use the obtained position estimate for
centering the binary reference. This centered reference is used as the initial shape
of a snake which has to converge to the new shape of the object. This process is
repeated until the end of the sequence. In summary, using jointly MLRT and snake
algorithms consists in first determining the object location (which corresponds to
very constrained variation of the shape), and then in segmenting the shape whose
position is approximately known. In many instances, the shape variations from one
image to the next are small, and only few snake iterations are needed to converge
to the new shape.

Let is first consider the problem of tracking walking persons. Typical images
can be seen in figure 11. We can note that due to the walk, the apparent shape of
the person changes during the sequence. In order to get rid of the influence of the
structured background, we make an acquisition of the scene without people. We
then substract each frame to this reference frame after having registered them. The
MLRT algorithm for location and the snake are applied to this difference image.
Such a procedure can be useful in surveillance applications for example. We can
see in figure 11 that the object is correctly located and segmented in the image
sequence.

The second example consists in tracking a car driving on a highway, and moving
away from the camera. Due to this movement, the shape of the target varies
during the sequence, and the binary reference used by the location algorithm must
be periodically refreshed using the snake segmentation algorithm. We can see in
figure 12 the result of applying the proposed tracking method to this sequence.
Here again, each frame is substracted to an image of the highway without cars,
and the segmentation algorithm is applied to a partially whitened version of this
difference image. In order to show the robustness of the proposed algorithm, the
snake has been initialized in each image to a square approximately centered on the
object. We can see that the car is correctly tracked.

6 Conclusion and perspectives

We have presented a generic approach to parameter estimation in image processing
using SIR models. Possible applications include object detection and location, at-
titude and scale estimation, segmentation and recognition. This approach is based
on a simple statistical modeling of the image. This enables us to adapt the algo-
rithms to the statistics of the noise actually present in the image, while keeping
the same algorithmic architecture. When the considered model is not sufficient to
describe the observed scene, we have described methods for adapting the image
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Image n °1

Image n °4

Image n °9

Figure 11: Example of tracking on an image sequence. The sequence is composed of 9
frames, and frames n° 1, 4 and 9 are shown. Left column : image with initial snake. This
initial snake is the shape segmented in the previous image translated to the estimated
object location obtained with the MLRT algorithm. For image n °1, the initial shape is a
square. Right column : image with snake after convergence.
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Figure 11: Example of tracking on an image sequence. The sequence is composed of 9 
frames, and frames n° 1, 4 and 9 are shown. Left column : image with initial snake. This 
initial snake is the shape segmented in the previous image translated to the estimated 
object location obtained with the MLRT algorithm. For image n° 1, the initial shape is a 
square. Right column ; image with snake after convergence.

Proc. of SPIE Vol. 10296  102960C-27



220 / Critical Reviews Vol. CR74

Image n °1
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Figure 12: Example of tracking on an image sequence. The sequence is composed of 9
frames, and frames no 1, 4 and 9 are shown. Left column : image with initial snake. This
initial snake is a square approximately centered on the object. Right column : image with
snake after convergence.
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Figure 12: Example of tracking on an image sequence. The sequence is composed of 9 
frames, and frames n° 1, 4 and 9 are shown. Left column : image with initial snake. This 
initial snake is a square approximately centered on the object. Right column : image with 
snake after convergence.
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(whitening preprocessing) or the algorithm (MLRT approach). The proposed tech-
nique is thus flexible, in the sense it can solve a variety of image processing tasks on
a variety of images types, while keeping the same basic structure. This technique
has been proven efficient on different types of synthetic and real -world images.

There are numbers of perspectives to this work. The unified algorithmic struc-
ture of SIR -based methods makes it possible to combine several tasks in a single
application. An example has been given of the cooperation between the location
and segmentation approaches for target tracking. The inclusion of attitude estima-
tion (as a particular case of constrained -shape segmentation) and of recognition in
such systems would be useful in many applications.

Another interesting development of this work is optical implementation of the
described algorithms. We have shown that they are based on correlation operations
with binary references. This makes it possible to benefit from the speed of binary
SLM -based optical correlators. Note that in this case, the optical correlator would
constitute the main building block of a system that would not only be able to
perform location or recognition of a known target, but also segmentation.
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