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Abstract
Imagery edges occur naturally in human visual

systems as a consequence of redundancy reduction towards
"sparse & orthogonality feature maps," which have been
recently derived from the maximum entropy information-
theoretical first principle of artificial neural networks. After
a brief math review of such an Independent Component
Analysis (ICA) or Blind Source Separation (BSS) of edge
maps, we explore the de-mixing condition for more than
two imagery objects recognizable by an intelligent pair of
cameras with memory in a time-multiplex fashion.

We assume that during the first look the system has
enough time to have two cameras pointed, triangulated, for
instance, focused on the girlG standing in the shadow of a
tree_T hidden with birds_B. Mathematically these objects
are mixed in two cameras with 2x2-matrix [A0] such as: (x1,

x2)T=[A0](G , T+CB)T thout knowing birds hidden quietly
in the tree indicated by a small order of magnitude
0(c). Suddenly the birds begin to sing. By design, two-
camera system has two separate pointing & focusing &
memory capabilities. Since as a quick response, only one of
the dominate camera having the de-mixed girl image G can
point away and focus at the birds hidden in the tree with a
second look defmed mathematically by (y1, blurred y2)T
[A1](T, B)T. By design, the new image Yi ofbirds & tree is
acquired by the dominating camera with a new focus,
whereas the other has a blurred y2 and is therefore
replenished by the previous de-mixed image (T+eB),
provided that each camera processes its own memory
update rule. We consider channel communication
application that we can efficiently mix four images using
matrices [A0] and [A1] to send through two channels.

1. Principle of Orthogonality and Sparseness
The visual cortical feature detectors might be the end result
of a Redundancy Reduction Process (RRP) [1, 2], in which
the activation of each feature detector is supported to be as
statistically independent from the others as possible. Such
as 'factorial code (of joint probability density)' potentially
involves independencies of all orders, but most studies [3,
4] have used only the second-order statistics required for de-
correlating the outputs of a set of feature detectors. Field
[5] has observed that the early-unsupervised learning
algorithms are mainly based on the second-order statistics.

Current understanding is that the need of high order
statistics such as the 4th order cumulant called Kurtosis may
be captured completely by the information-Theoretical
approach of maximum mutual information entropy
underlying the Independent Component Analysis (ICA).
From the knowledge representation point of view, the more
efficient and robust representation, the better. Two
principles are the keys to achieve efficient representation:
orthogonality and sparseness in the hits frequency of
feature detectors leading to unique identification. For
example, an edge-map with one's over zero background is
clearly sparse, local, and almost orthogonal. Biological
evidence is the Hubel-Wiesel oriented edge-map [6] in the
several octave scale of edges [7], similar to 2-D oriented
Gabor Logon (information unit similar to a windowed FT or
a WT without affine parameterization. The landmark
accomplishment of ICA is to obtain, by unsupervised
learning algorithm, the edge-map as image feature a,
shown by Helsinki researchers using fourth order statistics
of i7 -- Kurtosis K( and derived from information-
theoretical first principle of ICA by Bell & Sejnowski
[8,9,10]. The key to a good representation is to strike the
balance among conflicting requirements, such as efficiency
and sensitivity, redundancy and robustness, noise tolerance
and misclassification. Orthogonality is obviously the
desirable characteristic in an efficient representation. For
example, if there exists many features sets that are closely
matched to particular signals, then obviously the features set
where every features are orthogonal to one another would
require less terms to represent those signals. Orthogonal
representation can be attained through the use of
transformation, such as Fourier Transforms (FT) and/or by
statistical methods, such as Principal Component Analysis
(PCA), which is shown here to be a special case of the
Independent Component Analysis (ICA). It is important to
point out that the methods mentioned above provide
orthogonal feature set in the global sense: To further reduce
the redundancy of the representation, more restricted local
requirement must be imposed. This prompts the next
refinement in the design of feature set: sparseness. This
characteristic can be achieved using transformation such as
Wavelet Transforms (WT), or Adaptive Wavelet
Transforms (AWT), or by statistical means such as ICA.

From algorithmic point of view, by passing signal
through FT we convert the data into frequency domain.
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PCA maps the data into linear combination of "principal
components'. Since the image signal is usually scanned
from 2-D into 1-D vector, stationary image exhibits
coincidental frequency. Further generalization of FT
involves VT an ultimately AWT, while PCA is generalized
into ICA. We found that continuous AWT and discrete ICA
are roughly isomorphic. While AWT is useful for
supervised feature extraction. ICA is for unsupervised.
While AWl is continuous and invertible, ICA is not.

An unsupervised learning strategy of Artificial Neural
Network (ANN) is to change the weight matrix [U] of
ANN to sieve or so-to-speak squeeze in parallel all the
useful information from the time series of input vector x(t)
until the output vector u(t) [WJ x(r) contains no more
useful information at maximum entropy H(u) shown in
Fig.l. In other words, hopefully all the good stuff is already
kept in the memory weight matrix [W]. This strategy is
different to the supervised learning, because one can not
assume any specific output goal for the input, except the
most natural one "garbage-output for any useful
inforniation-input" by the strict definition of no supervision.
Such an intelligent learning may be described by the motto
of neurocomputers-"data-in & garbage-out" as opposed to
the usual motto-"garbage-in & garbage-out" in traditional &
non-intelligent computers. This new paradigm is useful for
solving a statistically matrix inversion [J' which
mathematically underlies the Independent Component
Analyses (ICA) as follows: u(t) = [WJ x(t)=[W] [.4]
s(t),where t stands for both time of signal or the scanning
order of pixels. If the learning of weight matrix [U'] can
achieves the maximum entropy H(u) of the output u or the
linear slope portion of the maximum entropy sigmoidal
neuron output H(y)=H('a(u))=H(u) which implies that all
nth moments of the ANN output components u=/u1, u of
two sensor neurons are independent in terms of the
normalized statistical histograms p(u) defined
as: > Jzip(u)du.

Specifically, the whitening of the

second moment of the output shows: <u(l)u'(t)> = [W/[.4]
<5(t) sT(t)> [4]7[J477 = [I] This Oja's sphering is
equivalent to [147 = /A]' provide that statistical de-
correlation of sources <5(t) sT(t)> = [I] is true (if not, pre-
whitening filter [WJ = <x(l)x(t)'> - isoften used by Bell-
Sejnowski et. a!. The fourth cumulant, the Kurtosis K(u),
is often used by Helsinki's group to seek the statistical
matrix inversion. K(u) = <u4> - 3 (<u>) in terms of a
single weight vector update: dw/dt = dK/dw. The other
weight vectors are found by the projection pursuits.

Information is kept wi/hi,, memory
Fig. I An unsupervised learning strategy of Artificial Neural

Network (ANN)

Such an unsupervised learning methodology has been
given in solving the statistically Blind Source Separation
(BSS), as first introduced by J. Herault and C. Jutten,
A[W]=g(x)tanh(uT) in terms of some ad hoc odd functions,
in the first Snowbird ANN Conference in 1986. Both ICA
subsequently coined by P. Como and BSS further elaborated
by Herault & Jutten were appeared in Signal Processing
Journal in 1991. Oja ci'. a! [11] elaborated the nonlinear
PCA learning, because neuron output v = tanh(u) = u - 2/3

+ ... has a similar Taylor expansion as dK(u)/dw.
Recently, Bell and Sejnowski [8-10] at Salk Institute

have derived from the first principle of unsupervised ICA
the sparse edge map, a typical characteristics in early vision
as discovered in cat's eyes by the Hubel and Wiesel [5.12].
This may be considered one of major milestones from the
information-theoretical viewpoint. The first principle of
ICA may have several forms, e.g. absolute entropy versus
mutual entropy. Neg-entropy-- the distance from the
normality, Edgeworth versus Gram-Charlier expansions (of
pdf in terms of moments) which are related to the maximum
Shannon entropy H(u). The essential portion related to the
change of weight matrix is equivalent in achieving the
redundancy reduction toward independent components
which gives rise naturally to a sparse orthogonal edge map
(unfortunately only at one wavelet resolution). The ANN
unsupervised learning changes the ANN weight matrix to
sieve or squeeze anything useful (higher order correlation
information) from the input sequence until the outputs are
left with (nothing but maximum entropy) redundant garbage
or noise. This strategy is on the contrary to the supervised
one because in a truly unsupervised learning we cannot
assume any output goal but the garbage-output for
information-input. Amari [13,14] et. a! have further
contributed to the speedup of learning by suggesting a
natural gradient descent, rather than the original entropy
gradient involving a non-local weight matrix inversion.

One of the remote sensing applications is to use the
satellite, Landsat, to oversee the earth resource
management, such as the deforestation of Amazon, the

Unsupervised Learning
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major green lung of the Mother earth. Thus, to support the
mandate of the World Bank loan and the taxation law of
Brazil, Szu [15-19] has proposed in 1996 to supplement the
infrequent on-site visits with real time surveillance
technology based on maximum input entropy H(s) of
independent ground radiation sources, which turns out to be
a different approach of the traditional maximum output
entropy H(u) to ICA. Thus, we shall briefly summarize
H(s) methodology herewith. First of all, such a remote
sensing de-mixing technology can ascertain the percentage
of tree being cut within the footprint of 30m2 of seven
overlapped pixels based on seven spectral bands x ={xj, x2,
. . . , x7}measured on the Landsat having six infrared bands (1
pin to 10 tin) and one visible band per each pixel Although
within the 30m2 resolution of single pixel the exact location
of variety jungle canopy objects s ={s1, s2, . .} are unknown,
but their mutual interaction must be in the short time scale
to be statistically independent, i.e. having an instantaneous
maximum entropy H(s1, s2, .. .). The traditional
methodology is based on the lookup table that each object s,
may be associated with the radiation distribution spectrum
a which could be in practice calibrated in the laboratory.
However, in a real time remote sensing observation the
seasonal and diurnal variation [A] = [a1, a a7] are
unknown except the fact that it satisfies mostly a linear law
x = [A] 5 per pixel. Szu and Hsu have demonstrated in
1997 a different ANN approach of ICA based on the
assumption of "no extra input information (i.e. maximum
entropy) except real positive photon sources s, giving rise to
real positive measurements x" We assume a constrained
maximum source Shannon entropy H(s) = - L , log ,
carried by source neurons s, with the help of dual space
neurons called Lagrangian force .Z neurons for the
Hopfiled-like energy function E, j[A]sj - x) for the
measurement data input and Helmhotz free energy 2(Ls —
1) for the total percentage of unknown sources, which turns
out to be a non-self-dual generalization ofHopfield ANN (if
A. were Si): H(s) -L s, log s, ..I, 21('[A]11s -x,)-(2—1)(Ejs,—-1)

(i) zl[A] =dH/d[A] — As1 Hebbian learning between dual
neurons in the inner product space

(ii) Setting the fixed point dH/ds1 = - log (s) - Ii 2[A] -
2 = 0 and summing over s to evaluate Helmotz free energy

we derive the sigmoidal neuron output. s, 1/ [1 +
exp(,uj- pi)]; dual net sum i,= 2([A]1. The real world
application is anticipated to have taken neighborhood pixel
correlation into consideration.

Similarly, one of the limitation of Blind Source
Separation by Unsupervised Learning is that the number of
input cameras for the measurement data must be known
ahead of time to be greater or equal to the contributing

sources, which are in principle unknown to begin with. On
the other hand in a biological visual system. two-eye
sensors are sufficient to separate more than two image
sources. The difference shows that despite ofthe success the
current unsupervised learning is till in the infancy and the
power of smart memory of two eyes that can pay attention
to different directions in order to check out several different
image sources.

2. Sensors for 2 Sources at Constant [Al
Consider the case of 2 sensors for 2 sources, basic

geometry can be shown in the following in equation (1), and
the block diagram is plotted in Fig. 2.

(x (t)') (cos(6) cos(62 )')('I (t)') (1)
X2 (t))

—

sin(91) sin(92 ))S(t))

x1(t)

S1(t)

S1fl2 3—' u9(t)
x2(t)

Fig. 2. Block diagram of two sensors for two sources

The measured data is written as in equation (2), and the
learning weight, 9, can be re-formatted as in equation (3). It
can be shown that the output, ut) of Fig. 2 is theoretically
invertable expressed in equation (4).

1(t) =1s1(t) = [A]1(t) (2)

fx1 (t)1u0(t) = [cos9
sin8t j = iT1(t)

= (cos8 cos 8 +sin 0 sin 01)s1(t)

= cos(8—0)S1(t)

Knowing O, (not blind) theroretically invertable at
weights 0= 0,:

[U01 1 _ [ 1 cos(0, — °2 )1[Si

[u02j[cos(02—0,) 1 j[52

However, in practice note that K(u) K(s1) + cos(Oj-
0,)K(s2) is still a variable because of two sources
involvement. Unknown 6 (blind) if it happens at the killing
angles, 0 = 0 + id2 then Eq. 3 gives cosfrcl2)0 and
u6(t)=sin(02- 0j)s2(t). This happens at extreemum Kurtosis
K(u9(t))sin(02- 81)4K(s2(t)) such a blind de-mixing

(3)

(4)
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employs the killing-principle of eleimination shown as
follows.

Fig. 5. Illustration of two mixed inputs and one de-mixed
output by the killing weight vector k(01 -itI2)

The simulation results of two sources and one mixed
data is plotted in space of the weight, 0, shown in Fig. 3,
and their Kurtosis is displayed in Fig. 4. The image results
are illustrated in Fig. 5. Note that the extreemum Kurtosis
happens at source picture 1 (Yamakawa) vanishes and the
next is source picture 2 (Szu) appears as shown in Fig. 5.

Maximum Output Entropy is shown equivalent to a
batch mode operation of two eliminating (killing) vectors of
Maximum Kurtosis as follows:

Given two arbitrary mixing vectors at angle 0 andj at angle 02 in the 2 sensor 2-dimensional space.

= (-LI) = d)*)] = (1,1)-

If(x,y) - (y,x), in which 0 is equal to 0+3t/2, then:

[A1[A] = J
The inversely r.m.s. matrix [Wz] is used to normalize

both the gain by the signal energy itself, i.e. in terms of
covariance matrix, ['Vz] = (T)S, and to de-correlate two

input data , so that such an energy-gain pre-conditioned
input data becomes de-correlated: '= [wz such that

( .T) = ['I• This fact makes the unsupervised teaming

matrix [WJ much easier to be found, because the de-
correlation condition has reduced the unknown weight
matrix to an orthogonal transform matrix [W(6)J[W(9)]T
=[JJ which has only one angle parameter in 2D. This is
because <uu> = [WJ[WzJ<xxT> [WzJT[W]T =

fIJ by means of[WzJ<xxT> [WZJT [I] implies [WJ[WJT
[I] to be orthogonal.

3. Demo. in ICA: 3 sources with 2 sensors
Now we will demonstrate why two sensors can NOT de-

mix 3-source-basic geometry in Eq (5) and the block
diagram is plotted in Fig. 6. From Eq (6), it can be
observed that it is theoretically non-invertable since the
matrix is singular, i. e. the determinant of the matrix
vanishes and the set of three linear equations is dependent.

u (t) = cos( —0 )s (t) (6)

Kurtosis maximum happens at one of unknown mixed
angles, say 01±it/2, where one set of sources s1(t) vanishes
from the mixed data .(t) and then the remainder two
sources are linearly DEPENDENT and can NOT be
obtained by the Bell-Sejnowski statistical matrix inversion
algorithm.

cos(0 —0,) cos(61 —03) S1 _. (7a)
u0, = cos(9, —6) 1 cos(9, —93) s, = [cjs'

u Lcos(03 —0) cos(93 —9,) 1 s,

cos(91 —92) cos(91 —93)

[Cl = cos(0, —0) I cos(0, —03)
7b

cos(93—01) I

(a,
= 002

003

e.g. analytical verifiable when0 = i0

H

Fig. 3. Two sources and de-mixed data in space of the
weight, 0 (left);Fig. 4. The analyses of Kurtosis
(right), where one of the extreemum is at 0=99°.

mixed d.ta I mixed dxl. 2 d..m.e.d imecx (Kxrtos):

= (-1-05) . -

'a, =(05,—I)=d(0)
(1 O.5'\

[AJ= j=[a1 â2]=[ä0, a(02)]

[wJ[w,j=[4I( =w=[::: H]
(5)

[Aff4 [I -1L1 I 0

cos(03 —02)

a, a3)

= singular. . detC = 0.
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Fin. 6. Block diagram of two sensors and three sources

-
— ...,—kaflOiS —

—

Fig. 7. Three sources and one mixed data in space of the
weight, 9(left); Fig. 8. The analysis of Kurtosis (right)

Simulation results of three sources are plotted in space
of the weight, B in FigV 7, and their Kurtosis is displayed in
Fig. 8. The image results are illustrated in Fig. 9.

mtx.d data 1 mix.d data • -mind Imag. (KUTIVI 'Si

E
Fig. 9. Image illustration the dc-mixing result that a set of

three equations with two measurements.

4. Piecewise Constant Mixing Matrix
Since N sources must require at least N measurements

according to the determinant of N equations for linear
independence proven similar to Eq. (6), we explore the
conditions to circumvent the restriction. We seek after the
HVS for clues, since two eyes can obviously perceive
several more objects. On the other hand, we are aware that
the HVS is quite complicate. We have (i) left-eye-versus-
right-eye dominance or vice versus, (ii) attentive and pre-
attentive vision, (iii) have with unbalanced focus with
imperfect eyesight, and (iv) the most complicate of all we
have endowed with a powerful cortex-l7 associative
memory. How can we delineate the realistic cause and
effect (i-iv), so that we can design a simplest possible ANN
to support a pair of smarter sensors?

An instantaneous refreshing memory is utilized with
two-sensor-ANN Eq(3) Fig. 10, which must be able to

mechanically point independently at the scenery and
demonstrated to be capable to dc-mix several objects in a
time multiplex fashion.

G [A4] Xi [W0J

(T+cB) X2 (T+cB)

memoryblurredTy x B
[A1] [\VI

Fig. 10. 2 Cameras with independent pointing & focusing
capability

We assume one sensor to be dominating over the other
in the sense of giving the choice of 2 sensors, similar to
HVS eyesight dominance (i) and (iii). We consider a scene
that a beach girl, G, is standing in the shadow of a tree, T,
hidden with two birds, B. These three objects are mixed in
2 cameras with 2x2-matrix [A0] such as: (x1,x2)T=[A0](G,
T+eB)T without the detection of birds hidden quietly in the
tree indicated by a small order of magnitude 0(c). The first
look pays attention at the person without being conscious of
the birds hidden in the tree shown in Fig. 11. The un-
supervised ANN has successfully found the two killing
vectors to de-mixed the scene revealing a clear image of the

i

—:

ic,

0 L

Fig. 11. Pt look (girl standing in the shadow of the tree
hidden with birds)



erson froni memory while the tiee mixture is left on the
other sub—dominate memory screen shown in Fig. 12

uddenlv. the birds begin to sing and that has prompted the
smart sensor looking for birds hidden in the tree.

l)Lie to the mechanical difficulty of double focus
requirement of simultaneously triangulation. onk the
dominant sensor is guided to quickly point, focus, and pick
up the nes input of bird-tree scene to replace the girl image
Ihe sluggish focus response of the sub-dominate sensor
acquire a not—quite—in—focus and blurred image of birds.
which is smart enough to replace itself with the previous1
dc—mixed memory of tree scene shown in Fig. 13. The ne
input together with early de—nuxed impression y' can he
utilited to dc-mix the birds and the tree. \Vc shos
mathematically that two different mixture (x1. x due to
luau ix Al mixing sources (U. v',, which is a combination
of I and [3 different from the second look y defined as
follos .-\ quick response calls for a second look
blurred v ) of matrix IA] fluxing sources ('1 13). of which
the memorized V': T--cB without the detection of birds
hidden quietly in the tree indicated by a small order of
magnitude 0(E) replaces the actual blurred y. We can still
yield a reasonable clear separation of the bird from thc tree
in Fig. 14. x =cos( Oj )v'-'-cos(65)G: x:=srn(01 )y'24 sin(0:)G:

cos( 0 )T cos( 04)B hlurred(v )=sin(0 )T--sin(04 )13 —
inemoriied '. where A,1 of' 1)1= 36' fl =60" A ] of
IL- 30' 0c 45"hut not vet point-in-focus & blurred y is
b\ design replaced h the refresh old niemorv v' I '

Fig. 13. 1 look of the bird-tree scene and image remained in the
memory

Fig. 14. Demo. brids from a tree
\lathematically speaking, if we can add another sensor

to Eq. (6). then [AI = [1 0.5 -UI -1 0;l 0.5 1] gives 3
mixture inputs shown in Fig. 16. A blind statistical matrix
inversion gives the dc-mixing results shown in Fig. 17.
('ompare with 2 sensors time multiplexing results, we find
that the design of the smart sensor with memory gives us a
reasonable well performance. Both cameras cannot point
simultaneously and instantaneously at the scenery in a

A

lie. 12. Dc-mixed girl image and tree-bird image
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perfect triangulation. The design of a smart pair of sensors
allow only one dominates camera to focus at bird-tree scene
for a new input and replenish the previously de-mixed
memory of tree scene on the other sensor memory as one of
the new input.

146

with independent pointing and focusing systems and some
working memory.
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5. Summary
We have provided an elementary mathematical review

of ICA limited by the measurement of two sensors. Then,
we have explored several possible real world applications in
terms of such artificial visual systems. Simulations of ICA
are given to support designs of those real world applications
based on two intelligent image/video sensors augmented


