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ABSTRACT

The concept of modes, or eigenfunctions, is fundamental for all wave phenomena in physics like optics, acoustics and
quantum mechanics. In optics and photonics, the concept of modes is well suited to describe emission and absorption,
coherence and interference, propagation and dispersion. The concept of modes consists of two aspects: first, the modes are
solutions for the propagation of the light; second, the number of photons in the different modes describes the transport of
energy or information. The energy density of the black body radiation, given by Planck's law, is the product of the density
of modes in free space and the average number of photons per mode, given by the Bose-Einstein distribution. The transverse
shape of the modes is determined by diffraction and boundary conditions. The longitudinal extension is given by the
coherence length.
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1. INTRODUCTION

The concept of modes, or eigenfunctions, is fundamental for all wave phenomena in physics like optics, acoustics and
quantum mechanics. In optics and photonics, the concept of modes is well suited to describe emission and absorption,
coherence and interference, propagation and dispersion.

The concept of modes consists of two aspects: first, the modes are solutions for the propagation of the light; second, the
number of photons in the different modes describes the transport of energy or information. The energy density of the black
body radiation, given by Planck's law, is the product of the density of modes in free space and the average number of
photons per mode, given by the Bose-Einstein distribution. The transverse shape of the modes is determined by diffraction
and boundary conditions. The longitudinal extension is given by the coherence length. They following properties and laws
are related to modes:
— Modes are orthogonal; they do not interfere.
— Only the light (photons) within one and the same mode is coherent and does interfere (for identical polarization).
— Differentmodes may have different phase and group velocities (dispersion).
— The quality of light is given by the number N of photons per mode: N << 1 for thermal sources and N >> 1 for lasers.
— The shape of modes may be changed by passive optical elements (lenses, mirrors, filters), however, the number N of

photons per mode cannot by increased.
— The energy throughput of an optical systems depends on the number of supported modes and the adaptation of the modes

between the different sections of the system.
— Noise in coherent electro-optical detection depends on the number of photons per mode.

These are the reasons why I believe that introducing the concept of modes is most adequate for education in optics and
photonics at least at a university level.

2. DEFINITIoN OF MODES

The modes are basically defined by the properties of coherence and orthogonality: modes are orthogonal solutions of the
wave equation, they do not interfere (the energy or optical power of a linear superposition of modes is equal to the sum the
energy or the optical power of the individual modes). Only the light (photons) within one and the same mode is coherent
and does interfere. Two types of modes are distinguished: spatial modes transverse to the direction of propagation (cross-
section and divergence) and temporal modes in the direction of propagation (time and frequency).
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2.1 Spatial modes
Spatial modes are defined by the diffraction limit. The prototype of a spatial mode is the Gaussian beam, shown in Fig. 1.

The diffraction limited divergence 0 is given by

= lim =_2_, (1)
Z—*oo Z icw

where ? is the optical wavelength. In two dimensions we
get

AM o2 and M 2 (2)

for the cross-sectional area AM and the solid angle M

From Eqs. (1) and (2) we see that the product of area AM and the solid angle M is constant, namely

LAMM=X2 (3)

which is the basic definition of a spatial mode. The exact shape of modes depends on boundary conditions (e.g. waveguides,
laser resonators) and can be changed by optical elements. However, for the use in the following discussions, only the
property given in Eq. (3) is relevant and needed. This property means, that a mode occupies in the "phase-space" (transverse
position and momentum of the corresponding photons) always the same volume.

2.2 Temporal modes
The definition of temporal modes can be based on the Wiener-Khinchin theorem, which relates the temporal coherence
function JT(t) and the power spectral density S(v), or often simply called the spectrum, by

r(t) = <V(t+t)V*(t)> = $dv S(v) e2t (4)

where <V(t+t)V*(t)> is the autocorrelation function of the complex amplitude V(t), t is the time delay and V is the optical
frequency. For a rectangular spectrum

P0 fv—v\S(v) = -;; rectI ) (5)

ofwidth iv we get from Eq. (4) the coherence function

r(t)=po5in(Tht) . (6)it Evt
From Eq. (6) we see that the coherence becomes zero for iVt = 1 , which gives

VMtMl (7)

for the basic definition of a temporal mode. This property means that photons within one temporal mode cannot by
distinguished by their energy hv.

For the interested reader and for completeness only, it shown in the following how for more general power spectral
density functions S(v) the values of LvM and LtM have to be defined. These definitions are based on the Wiener-Khinchin
theorem, already introduced in Eq. (4). In the general case, the coherence time is defined by

tM = 5dt I 2, (8)

where y(t) = IT(-r)IF(O) is the normalized coherence function. The corresponding definition of the spectral width is then
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Fig. 1. Gaussian beam as prototype of a spatial mode.



tM I5v s2(v)i (9)
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where s(v) = S(v)/F(O) = S(v)/P0 is the power spectral density normalized to the total optical power Po.

2.3 Basic properties of modes (spatial and temporal)
— Light within one mode is coherent (for identical polarization).
— Light from different modes is incoherent, does not interfere (orthogonality).
— Photons within one mode cannot be distinguished (uncertainty relation).

3. PLANCK'S LAW, LASERS, AND THE QUALITY OF LIGHT

In the following it will be shown how Planck's law of blackbody radiation, the ratio of the probability for spontaneous and
stimulated emission, as introduced by Einstein, and the quality of light in terms of coherence can be easily deduced from
and related to the properties of modes.

3 . 1 Planck's law of blackbody radiation
From the basic properties of modes given in Eqs. (3) and (7), we get for the density of modes (per volume V and frequency
interval Av) in free space

N 471 Lz/c 1 8ic 8mv2
R(v) — Vv 2 M (t)M xAyAthv c2 c3 ( )

where N is the number of modes, the factor 2 accounts for the two orthogonal polarizations, 4it is the total solid angle of
free space, Az/c is the observation time of the light propagating in the z-direction within a box of length Lz, and c is the
speed of light. The number of photons per mode ii in thermal equilibrium is given by the Bose-Enstein distribution

T=hv/kT 1
(11)

With hv for the energy of the photons at frequency Vwe get finally for the energy density in thermal equilibrium

8irv2 hv
uT(v) = .t(v)1T hv = —i---- , (12)

c ehv'kT _ 1

which is the well known law of blackbody radiation, first introduced by Planck. Compared with quantum mechanics, .t(v)
represents the density of states and i the population (number of particles) of the states. The first part of Eq. (12) holds also
for non-thermal radiation and confined modes in optical resonators.

3.2 Laser: spontaneous and stimulated emission (Einstein)
Following Einstein the transition probabilities dW5 for spontaneous emission and dW21 for stimulated emission in a two
level system are given by

dW = A21 dt and dW21 = B21u(v) dt. (13)

From considerations of thermal equilibrium (Planck's law, Boltzmann), Einstein found that the coefficients A21 and B21 are
related by

A2i 8ithv3 =hv t(v). (14)

Using Eqs. (13) we get for the ratio of stimulated emission, responsible for (coherent) amplification and laser oscillation,
and spontaneous (incoherent) emission

dW21B21u(v) 15
dW A21
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which holds also in the case of non-thermal radiation and confined modes, with i being the number of photons in the
considered mode. From Eq. (15) we see that break-even between coherent (stimulated) emission and incoherent (spontaneous)
emission is obtained for a population of one photon in the considered mode. As a consequence, the quality of light in terms
of coherence is characterized by the number of photons per mode with i(v) < 1 for (incoherent) thermal light and 1(v) > 1

for (coherent) laser light. We note that for optical frequencies (V > 3.1014 Hz) and reasonable temperatures (T <51O K)
at thermal equilibrium 1T << 1 (Bose-Einstein).

3.3 Coherence and quality of light
The quality of light in terms of coherence can be defined by the coherent energy, which is the energy per mode in space and
time. From the definition of temporal modes in Eq. (7) we get for the coherent energy in time

Ecoh 'v LVM AtM = Pv , (16)

where Pv = dP/dv = S(v) is the spectral power, or power spectral density, which is assumed to be nearly constant over the
considered spectral width v. In conclusion, the temporal quality of light is given by the spectral power. The coherence
time AtM can by changed (increased) by appropriate optical filtering, changing L\VM, but the coherent energy Ecoh does not
change. From the definition of spatial modes in Eq. (3) we get for the coherent power in space

mode = B M AM B X2, (17)

where B = dP/dA d is the radiance (power per unit area and solid angle), which is assumed to be nearly constant over the
considered area A and solid angle . In conclusion, the spatial quality of light is given by the radiance. The intensity dP/dA
(power per unit area) can be changed by appropriate optical elements (lenses, mirrors), but the coherent power does not
change. From Eqs. (16) and (17) we see that the quality of light in space and time is characterized by the number of photons
per mode

1mode = Emode/hV By 22/hv, (18)

where By dB/dv is the spectral radiance.

As shown above, the quality of light in terms of coherence, both in space and time, cannot be increased by passive
optical elements. Although this fact can be deduced from geometrical optics for its spatial aspect, the concept of modes and
number of photons per mode allows a more fundamental understanding through the concept of entropy and its statistical
interpretation (entropy as a measure of disorder). Increasing the coherent power or energy means increasing the number of
photons per mode, which corresponds to increased order and therefore to decreased entropy, clearly in contradiction to the
second law of thermodynamics.

4. MODES IN FIBERS AND COUPLING EFFICIENCY

In the following it will be shown how the basic definition of modes, given in Eqs. (3) and (7), can be used to estimate
number of accepted modes in a fiber, without being obliged to known the shape of the modes. The same approach is also
used to estimate an upper limit for the coupling efficiency of different light sources into fibers and between different types of
fibers.

4.1 Multi-mode and single-mode fibers
A typical step-index fiber, as shown in Fig. 2, is characterized by the numerical aperture

r fl1=fl2+Lfl
— — —

n2
NA = sinac n — n , (19)

— —
e e — — — ka

the corresponding solid angle of acceptance

—
a

ri1 J. c= (NA)2, (20)
— —

and the area of acceptance (cross-section of the core)

Fig. 2. Step-index fiber Ac = it a2. (21)
The number N of accepted modes can be estimated by comparing the volume in "phase-space" MAM required by a (spatial)
mode, Eq. (3), and the volume offered by the fiber, cAc. The result is
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N = A ( NAa2 • (22)MAM V A
For single-mode fibers N — 1 and for multi-mode fibers N >> 1. The estimation from Eq. (22) holds also for graded index
fibers or any other type of waveguide. However, to get the accurate number of low order modes the exact shape and cutoff
conditions of the modes have to be known.

In the case of multi-mode transmission, the maximum information rate is limited by the spread of the group velocity of
the different modes, the modal dispersion. There is spatial multi-mode transmission in multi-mode fibers (N >1) and
temporal multi-mode transmission, if the spectral width (LV)source of the source is larger than the bandwidth required by the
bit length (t)bjt, viz. (V)source (t)bjt > I.

4.2 Energy throughput and coupling efficiency
The energy throughput of an optical system is limited by the number of accepted modes and the number of photons per
mode. Since the number of photons per mode cannot be increased by passive elements, any reduction of the number of
modes from one part of an optical system to the next will cause a reduction of the energy throughput. This reduction can be
described by a coupling efficiency smaller than one.

The spatial distribution of the emission of a laser source is
characterized by the number of transverse modes and the
power per mode. The emission of an incoherent source
(LED) is best described by a Lambertian distribution of the
radiance (Fig. 3)

B(a) = B0 coscx, (23)

with the total power

P = A5$B(a)d = icBoA, (24)

where B0 is the radiance on axis and A the emitting area.

As shown in Fig. 3. coupling between source and optical fiber can be accomplished by an appropriate relay lens or direct
pig-tailing. Using the concept of (spatial) modes, we get for the maximum power coupled into the fiber

max mode Nfibre B0 it (NA)2A , (Pmax � P), (25)

where mode is the power per mode and Nfjbre is the number of modes accepted by the fiber. For an LED we get from
Eq. (17) mode = B0X2 (a<<1) and Nfjbre is given by Eq. (22). The maximum coupled power into a single-mode fiber
from an LED is then obviously max B0X2, with B0 given in Eq. (24). Similarly, we get for the coupling between
different fibers (Fig. 4) for the maximum coupled power into the second fiber

P2=(N2/N1)P1 , (P2�P1), (26)

where Pi is the output power of the first fiber, and N1 and N2 are the number of modes in the two fibers, respectively. This
consideration holds for any other type of coupling between fibers or parts of an optical system.

5. COHERENT DETECTION

Coherent optical detection is employed in all types of interferometry, but also in spectroscopy and communication. It is
obvious, that only the mutually coherent parts of the two superposed light waves will contribute to the coherent detection
signal. Therefore, the concept of modes is adequate for the description of the performance of coherent detection. In the case
of interferometry with diffusely scattering objects (rough surfaces, dispersed particles, etc), the return light from the
coherently illuminated object shows speckles (Fig. 5), corresponding to different zones of uncorrelated statistical intensity ad
phase. The size of these zones, or speckles, is given by the spatial modes of the scattered light.

From Fig. 5 we can deduce for the coherent power

Q()coh = P11u = P0 = 4 A0
= (27)
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Fig. 3. Coupling from a source (LED) to an optical fiber

Fig. 4. Coupling between different optical fibers



where the factor 1/2 stands for the fact that scattered

Q c;j light will be depolarized o is the solid angle of

QQ the spatial modes of the light scattered from the
0 illuminated area A0 P0 is the total power and I
g the intensity of the coherent illumination The3

c::Q numberof modes (or speckles) collected by the lens
AD depends on its numerical aperture on the object side

(NA D/2d0).

In the case of shot-noise limited coherent detection, the signal-to-noise ratio (SNR) is equal to the number of detected
photons per mode of the scattered light from the object (Poisson statistics), which yields

SNR = 21D(Pcoh/hv) (t)D, (28)

where TID iS the quantum efficiency of the photo-detector and (Lt)D the integration time (the factor 2 stands for the so-called
coherent detection gain). We see, that the SNR is independent of the number of speckles collected by the detector. If the area
AD of the detector is increased, the total detected power will increase, but the modulation depth of the coherent signal (fringe
contrast) well decrease accordingly. Increasing the number of detected speckles may help to overcome the electronic noise,
but not to increase the shot-noise limited SNR.

6. CONCLUSIONS

The examples presented in this paper have shown, that in optics and photonics the concept of modes is well suited to
describe emission and absorption, coherence and interference, propagation and dispersion. Besides that, the concept of modes
is fundamental in physics (quantum mechanics), and the examples from optics help to understand this concept, because the
consequences and properties of modes become visible. These are the reasons why I believe that introducing the concept of
modes is most adequate for education in optics and photonics, at least at a university level.
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Fig. 5. Speckle interferometry, coherent detection


