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ABSTRACT 
 
Nanotechnology, in particular nanophotonics, is proving essential to achieving green outcomes of 
sustainability and renewable energy at the scales needed. Coatings, composites and polymeric structures used 
in windows, roof and wall coatings, energy storage, insulation and other components in energy efficient 
buildings will increasingly involve nanostructure, as will solar cells. Nanostructures have the potential to 
revolutionize thermoelectric power and may one day provide efficient refrigerant free cooling. 
 
Nanomaterials enable optimization of optical, opto-electrical and thermal responses to this urgent task. 
Optical harmonization of material responses to environmental energy flows involves (i) large changes in 
spectral response over limited wavelength bands (ii) tailoring to environmental dynamics. The latter includes 
engineering angle of incidence dependencies and switchable (or chromogenic) responses. Nanomaterials can 
be made at sufficient scale and low enough cost to be both economic and to have a high impact on a short 
time scale. Issues to be addressed include human safety and property changes induced during manufacture, 
handling and outdoor use. Unexpected bonuses have arisen in this work, for example the savings and 
environmental benefits of cool roofs extend beyond the more obvious benefit of reduced heat flows from the 
roof into the building. 
 
Keywords: energy efficiency, windows, cool roofs, paints, nano-coatings, spectral selectivity, angular 

selectivity, chromogenics 
 

1. INTRODUCTION 
 
 
The terms “Greentech” and “Cleantech” have become part of everyday language. Given their growing use as 
a marketing tool for products and science proposals, a clearer notion of what they encompass is worth 
formulating. Then the reasons nanoscience and in particular nanophotonics and thin films are so important 
becomes clear. My experience is the scientific community, and the population at large have only vague 
notions of what the modern use of the terms “Green” or “Clean” actually means in the context of technology 
and science? As for quantifying “greenness” for any particular technology, though improving its elements are 
still poorly understood, but very important and illuminating [1]. The words energy, environment, pollution, 
sustainability, global warming, and resources, all come up in qualitative analyses, but relevant numbers are 
crucial yet all too often not provided. Underpinning all of these is the link between the quality of human 
existence and the thermodynamic and electromagnetic properties of the environment that supports it. This link 
has been weakening over the past 250 years. The quality of all life in future will hinge on creating something 
new, an over-arching harmony between technology and nature. This paper explores some of the likely 
elements involved in this task. 
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For a “green” nanoscientist or engineer stepping back to consider these broader questions in scientific terms I 
believe can lead to much better focus within particular projects, hence higher productivity, less wasted 
empirical effort, and the ability to better “mine” and use for energy and environmental related applications the 
explosive emerging array of new fundamental developments in optical, electrical, thermal, chemical and 
mechanical nanoscience.  The urgency of de-carbonising our environmental impact and remediating past 
damage, while satisfying the needs of a growing population, and lifting the quality of life for many of these, 
requires a new breed of scientists for which a useful distinguishing label might be “new-green”. They are not 
traditional environmental scientists, who focus on bio-eco-systems and chemistry. The latter however will 
increasingly need “new-green” input, while this new breed will use key elements of natural science including 
bio-mimickry, plus greater emphasis on the physical aspects of nature including, as will be demonstrated later 
in this paper, global and local climate science. They will rely on a growing army of traditional chemists, 
physicists, agricultural and environmental scientists, whose work must also advance, and be guided to some 
extent by the “new-green” paradigm. While some architects and engineers already fit the “new-green” 
criteria, a much wider understanding of these issues is now needed among our design decision makers.   
 
The scope of the emerging needs also means that economic aspects of any new technology must be 
considered. The world needs new products and improved versions of established products at commodity 
scales and low cost, to be met comfortably with existing resources. Lowering cost is not only about resources 
but also includes the energy and time used in manufacturing, plus supply and installation issues. Production 
scale capabilities are one of the core attractions for this task of select nano- and optical technology, as we 
shall elaborate. My group’s applied nano-photonic research in this field has been guided by this “new-green” 
principle. It relies on and also stimulates, new basic science. Examples follow. 
 
Many human needs come into the “green” equation and energy is just one aspect. The image of “green” is 
changing but past perceptions encompassing ugly, unwieldy structures and uncomfortable lifestyles, along 
with many failures to live up to expectations persist. Past association with a focus on nature, excluding 
economics, human needs and political reality, is fading. Advanced economies expect quality lifestyles, not 
turning back the clock. The aim is thus “green” combined with attractive, reliable and durable. This is core to 
our “new harmony”. The “old”, often romaniticised pre-technological harmony cannot support earth’s 
billions.  Two aspects of the traditional green movement, getting closer to nature and better preserving nature, 
plus reducing city pollution, are retained as they will be integral to our universal goals. As will be detailed in 
section 3, making the most of what the environment has to offer without hurting it will put all of us in closer 
touch with the natural environment, which is uplifting and dynamic, leading to health and productivity 
benefits. Developments in the 20th century, in particular air-conditioning, the fluorescent tube, and the internal 
combustion and jet engines, meant many spent most daytime hours in sterile and polluted environments away 
from links to the natural world in which we had evolved. Our “new-green” nanotechnology aims to restore 
that link, without destroying the benefits we associate with good lighting, thermal comfort, reliable transport, 
and so on. There are bonus novel benefits in this “new-green” world, which need more study and are sadly as 
yet mostly not appreciated. A wider grasp of the value these add would accelerate progress. 
 
Technology today is about provision of human needs efficiently and in high volumes. These include food, 
potable and irrigation water, processed materials, health, energy, light, transport, durable shelter, thermally 
comfortable buildings and clothing, quality air, tools and machines, education, communication, entertainment, 
security, and spiritual inspiration via employment, design aesthetics, access to nature, music, social 
interaction and the arts. To satisfy our definition of  “new-green” a technology has to provide for one or more 
of these while having minimal or zero adverse environmental impact. Defining that in scientific terms comes 
next. 
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 (1) 
 

 
with Φs incident solar power, ΦA total down-welling atmospheric radiant power, TA local ambient 
temperature, ΦC convective power exchange (which can be negative if  roof temperature Troof < TA which is 
often possible at night), Tsky is effective sky temperature, Tzone is interior temperature, vw is wind speed. The 
inwards flow through R can also be negative (ie outwards) if night sky cooling along with other factors such 
as internal loads and thermal storage lead to Troof < Tzone. If the roof material plus insulation is transmitting 
additional terms for transmitted radiation are needed. Managing ΦC may involve an additional outer 
transparent element not shown in figure 2. Its optical and radiative properties must also be carefully chosen. 
 
Coated and bulk materials are often compared by their normal incidence value of α, but computer simulation 
needs angular algorithms or data (for windows see the International Glazing Database [4]). Standard 
environmental incident spectra and surface orientation are often used, such as ΦS at normal incidence after 
passing though 1.5 air masses (AM1.5), ΦA when sample is normal to the zenith and the air is dry, and 
hemispherical emittance E. Total and instantaneous performance requires ΦS and ΦA to both vary over time to 
account for installed geometry, local weather, and normal environmental dynamics including night-day shifts 
in both radiant energies and air-flows. Finer details of the solar and atmospheric radiant spectra and their 
incident profile are often needed. The material then needs even finer tuning of spectral response, incidence–
exit angle response, and scattering profile. Such tuning ability is a strength of nano-engineering. 
Examples of desired optical combinations include 
 

• daylight gain with good solar heat rejection  
• color with high solar reflectance  
•  clear view plus useful daylight without glare or solar heat  
• high reflectance of incoming thermal radiation except where the atmosphere is IR transparent  
• strong insulating ability with high transmittance  
• blocking solar radiation at directions of incidence high above the horizontal but transmitting for  near normal and lower incident directions (for daylight and view).  
• uniform lux distribution from a skylight or window despite seasonal and daily variations  
• minimized localisation  or maximized uniformity of daylight related lux levels   

Dynamic control is useful and can be mechanical or intrinsic to materials. A response to the large time, 
direction  and spectral dependent variations in external energy intensities needs a special category of materials 
in which thin films and nanostructures have growing roles. These are the chromogenic materials whose 
optical and/or thermal radiation responses can change with time, either in an auto-response to solar and 
thermal conditions or in response to sensor signals. Switching of optical responses is driven by changes in   
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• temperature     thermochromic if spectral based, thermotropic if scattering based   
• applied voltage   electrochromic   
• UV radiation   photochromic  

 
• hydrogen gas   gasochromic  
• daylight intensity  fluorescent (for enhanced visual contrast in bright sun)   

 
Ideal spectral and angular dependent responses, plus examples of how nanostructures can get close to these 
ideals follow in section 3. It is interesting from a broader green technology perspective that many of the better 
chromogenic materials and related nanophotonic science have much in common with material developments 
in advanced batteries, supercapacitors and hydrogen storage materials [5, 2]. For example lithium ions 
intercalating or bonding into nanoporous oxide electrodes are used in electrochromics, select nickel and 
magnesium based alloys change optically as they absorb or lose hydrogen, doped VO2 thin films can be 
thermochromic with good visible transmittance [6], nanoparticles of material which undergo a metal insulator 
phase transition can modulate solar heat gains via on or off switching of an NIR localized surface plasmon 
resonance (without changes in visible transmittance)[7]. High performance transparent conducting electrodes 
are also needed in some of these and developments to get away from use of ITO, involve special 
nanomaterials including graphene and some special thin multi-layers. 
 
Section 3 following focuses on energy efficiency. Energy supply derived using solar thermal or photovoltaics 
increasingly uses nanostructures in one or more components. Nanocomposites have become the material of 
choice in high quality spectrally selective solar absorbers, which have high Asol and low E, including as used 
in the evacuated collector tube of large area parabolic trough electric power systems. These rely again on 
resonant absorption in the conducting component. A variety of nanostructures are being used in production 
and research level solar cells. Nanostructure in the transparent electrodes is available in mass production via 
for example pyrolytic deposition on float glass. They can achieve high conductivity and high transmittance 
combined plus enhanced light capture in the cell. If the cells use thin polycrystalline-Si this enables a single 
layer. Plasmonic nanoparticles displaced from the cell by a few nm thick passivation layer can also enhance 
photon coupling [8]. Related research developments include improvements in very thin (and non-ITO) 
transparent electrodes for inorganic and organic cells [9], enabling highly flexible plastic substrates, enhanced 
durability and enhanced charge coupling via reduced work function for charge transfer into devices. These 
developments carry over into light source developments mainly for LED’s and OLED’s, and also into all 
plastic or flexible general electronics. Low cost anti-reflection, including ability to maintain low reflectance 
over wide ranges of incidence, is of high interest for enhanced efficiency and amenable to various nanoporous 
structures and bio-mimickry.  
 

3. APPROACHING IDEAL OPTICAL RESPONSES WITH NANOSTRUCTURES  
 
 

Ideal spectral responses for opaque materials for use in solar thermal collectors and its exact opposite or 
spectral complement, which is ideal for cool roofs and some cool collector systems, appear in figure 3(a). The 
broken line in the visible zone is one of several variants for the cooling case in which color is added for 
aesthetics but there is retention of good but not as high solar reflectance as all NIR radiation is still reflected. 
An ideal transmittance spectrum for windows and skylights in warm and hot climates is in figure 3(b), with 
options for color and just how much daylight is admitted for glare control. The low transmittance spectral 
zones are preferably achieved via high reflectance especially for Planck wavelengths, though a useful low 
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A goal of energy efficient diffusing materials for lighting fixtures and light distribution systems is high 
transmittance combined with low glare, evenly distributed lux and minimal color shift. A dominance of 
forward scattering across the whole visible spectrum is then desirable and is available in a well established 
class of doped polymers involving PMMA in PMMA with the dopant having a slightly different refractive 
index to the host PMMA via internal nanostructure with more cross-linking [19]. This also makes production 
easy since the dopants soften but don’t melt in moulding, even though the host melts. A far from Lambertian 
output distribution may arise, which might be useful in itself. A wider light spread without loss in efficiency 
is also possible using ancillary design features, including lamp offset or multiple small lamps.  Ideal skylight 
diffusing materials are different as they benefit from backscattering, which typically reduces solar heat gains 
by ~50%. Even though lumen input is lowered as well, we have found internal light distribution and average 
lux levels combined under clear skies represent much better overall lighting quality than non-diffusing 
skylights with their higher total visible transmittance, hence higher lumen input, for the same skylight area but 
less resulting spread.  

3.2 Nanostructures for infra-red spectral selectivity and night sky cooling 
 
Just as surface resonances from free electrons in conducting nanoparticles can be used for fine tuning at solar 
wavelengths, surface phonon resonances in select insulating nanoparticles can be used to fine tune infra-red 
absorption bands using nanoparticle doped polymers or as coatings on metal [20]. This resonance occurs 
where the smooth insulating material is a strong reflector due to having a negative dielectric constant (c.f. 
conducting reflectors). This is the Reststrahlen band. Combined mass of the cations and anions in each 
compound unit determine its resonant location. The ideal for night sky cooling to well below ambient is 
absorption and hence high emittance confined to wavelengths where the clear sky atmosphere is most 
transmissive which is between 7.9 μm and 13 μm. Examples appear in figure 9 for SiC and SiO2 nanoparticles 
in PE foils. Temperatures and net heat pumping well below ambient can be achieved with such coatings in 
thin polymer layers on metal if set up under suitable IR transmitting covers (we have got to 15° C below 
coldest ambient in simple systems). This is because most incoming atmospheric radiation is reflected, while 
some radiation is still emitted but at wavelengths where there is little incoming atmospheric radiation. The 
special covers are needed to reduce inflow of heat from local air. Select polymers also provide useful 
spectrally selective radiation, though they can be improved with addition of nanoparticles. For many 
applications including open cool roofs, and roofs with special covers high emittance combined with high 
albedo as in figure 3(a) is still preferred. This is because cooling to a few degrees below the coldest ambient 
of the night is adequate and allows more heat to be pumped, and if desired for later use, “cold” to be stored.  
 
The most important factor for all cool roofs is a high albedo. Considering figure 1 again, as albedo increases 
the sensitivity of heat gain and hence cooling load in homes to both emittance and sub-roof R-value decreases 
[3]. Hence the high cost of raising R to well above R ~1.63 Km2/W  (as found in 50 mm thick fibre glass) is 
not needed if albedo is high. The environmental and energy saving return on investment in coating to raise 
albedo is usually far better than raising R. Raising R too much may even be deleterious for many non-
residential structures as these tend to have high internal loads. Then night sky cooling via high emittance can 
help a lot in overall cooling but is unable to do so if heat is trapped internally. An ideal practical combination 
is α > 0.8, E > 0.9. Intermediate R is preferred if winter heating is also an issue as long as albedo is high. 
Winter heating needs are much less sensitive to changes in roof albedo than summer cooling loads. Cool roofs 
have multiple important additional benefits, which are noted briefly next. 
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to achieve maximum environmental impact per dollar invested. Cool roofs were a good example, where we 
found that having a very high sub-roof R-value has little additional benefit if albedo is high, but adds a lot of 
extra cost. If thermal emittance is also high raising R can actually lower performance especially if internal 
loads are high and/or clear dry skies are usually present. It is also worth broadening system considerations 
even further. For example if PV systems are mounted on a cool roof as opposed to on one with mid to low 
albedo, useful electric output gains can arise with little or no additional cost. Another example is impact on 
cooling COP’s, especially of roof mounted air conditioning units (common in large buildings), but also even 
if near cooler walls. COP’s can be a lot higher if intake air temperatures drop.  Air near medium to low albedo 
roofs can reach around 45°C to 60°C while that near a cool roof may stay a few degrees above ambient. A 
COP rise from around 2.0 to around 3.0 to 4.0 is then feasible [21] with R22 and R410A cooling systems. 
Resultant savings in power use and carbon emissions are large. Additional benefits should flow from air 
exchange using cooler local air. For both PV and COP cases night sky cooling adds additional performance 
over the ensuing day. 
  
The right materials combinations also provide ancillary benefits beyond the single building analysis. Peak 
demand reductions are one bonus if enough cool roofs exist.  Meeting peak demand is demanding on grid 
capital investment, power sources and chiller capacity. Avoiding overheating discomfort on a handful of 
worst days each year is the core problem. Its amelioration with better building design is not difficult, from 
cool roofs and controlled night cooling with sky radiation, and letting in local cool air when available. Peak 
(thermal) cooling load contributions if albedo rises by just 0.2 with R = 1.63 Km2/W reduce by 1.5 kW to 
2kW per 100 m2 of roof [3] and even with R = 3.06 (double thickness) ~1 kW per 100 m2 of thermal gains at 
peak are avoidable. With larger shifts in albedo, which are often feasible, even larger savings are possible.  
 
Future studies need to look more carefully at the impact of cool roofs on local microclimates, and by 
extension if there are enough such roofs, whole precincts can become cooler. Enhanced night sky cooling can 
add to this impact as cold sub-ambient air flows off sky-cooled roofs. Combining these with local green 
shaded areas can make urban outdoor precinct conditions more pleasant and further reduce overall cooling 
demand.  
 
Many future nano-developments may add to those outlined above [2]. Advances in thermoelectricity to enable 
more power from power station waste heat, car exhausts and solar heat, plus compact electronic cooling, 
holds much promise using nanostructures [22]. It has however formidable manufacturing challenges. Durable 
construction materials embodying nanostructures, especially using complex pores for strength and light 
weight, are needed. Adding intrinsic sensors and dynamic optical properties may change the way urban areas 
look and behave, with major environmental benefits. Water, humidity and condensation management will 
develop further with nano-systems. 
 
A world based on “new-green” technology, with its large nanotechnology component, is an enticing prospect. 
Attaining such a world and then nurturing it must be one of today’s core challenges. 
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