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ABSTRACT   

Sensing technologies are currently needed for better maintainability, reliability, safety, and monitoring small variable 
changes on microscopic and nanoscale systems. Plasmonic sensor research has contributed to chemical and biological 
sensing needs by monitoring ultrafast temporal and spatial changes in optoelectronic systems. Nonlinear plasmonic 
waveguides with subwavelength confinement can further enhance the capabilities of plasmonic devices. Results in this 
paper highlight the derivation of the full-vector Maxwell Equations for the single metal- dielectric slot waveguide and 
the metal –dielectric –metal waveguide with the dielectric having a Kerr-like nonlinearity. These waveguides, typically 
have metallic losses that compete with nonlinearity at certain frequencies that can hinder surface plasmon wave 
propagation. By considering temporal and spatial beam propagation in these waveguides one expects to observe novel 
effects that could be used for sensing applications such as femtosecond pulse propagation with plasmon self-focusing, 
self-trapping, and frequency conversion with reduction in metallic losses.  
 
Keywords:  Nonlinear  plasmonic waveguides, Nonlinear Kerr Effect, nonlinear surface waves, surface plasmons, 
optical bistability, solitary waves 
 

1. INTRODUCTION  
There is a current need for communications systems to be smaller, faster, increased bandwidth, and with more 

robustness. There are fundamental limitations on electronic and optical technologies such as material fabrication and 
diffraction effects.  Nanotechnology research can address these issues in particular plasmonics. Optical fields coupled 
to electron oscillations that are limited at a metal/dielectric interface are called surface plasmons (SPs). These fields are 
squeezed light that are confined to the subwavelength. The SPs exist in other structures besides waveguides such as 
triangular grooves, slot waveguides, spheres, cones, and arrays[3,5,22,25]. SPs contribute to electric field enhanced in 
Surface Enhanced Raman Scattering (SERS) [3]. The current research can lead to development of SP based 
components, devices, and circuits such as waveguides, surface enchanced Raman scattering (SERS) sensors, 
nanoantennas, resonator structures, integrated platform electronic/optical structures. Even soliton propagation is 
approximated based on plasmonic based equation scalar models such as the NLSE (or Nonlinear Schordinger 
Equation). Spatial soliton propagation is established by opposing phenonmena Kerr or Kerr-like effect (self focusing or 
self trapping) and diffraction. These solitons also exist below the diffraction limit [30-32] or subwavelength spatial 
solitons at the dielectric\metallic interface. Now, with the well known features of plasmonic waveguides with 
dielectric\metallic interface, can waveguides propagate with a Kerr or Kerr-like layer (or nonlinear medium)? It turns 
out that surface waves or SPs exist for dielectric\metallic\nonlinear medium. Recently, graphene layers or thin layers 
have been an area of interest for researchers in waveguides due to its similiarities to metal properties. Although SPs do 
not exist for the TE mode in a dielectic\metallic waveguide these surface waves can exist with  graphene waveguides.  
Graphene layers that are very thin compared to incident wavelength can be approximated to boundary conditions in 
Maxwell’s Equations to caluculate dispersion relations and transmission/reflection coefficients[4,21,23]. 

In this work, surface waveguide physics for dielectric\nonlinear interface is briefly presented to solve 
analytical solutions to nonlinear equations for  tranverse electric(TE)  and transverse magnetic (TM) with conductivity 
considering a thin graphene layer in the boundary conditions. Then, using the first integral approach, a dispersion 
relation is calculated for the TM mode with a derived equation for the power in the TM mode. Lastly,  the single layer 
dielectric\thin graphene\nonlinear medium and the multilayered (dielectric\thin graphene\dielectric\thin 
graphene\nonlinear medium) waveguide are studied to calculate reflection and transmission coefficients but a different 
approach is taken for the intensity dependent index of refraction not normally encountered coefficient calculations.  
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2. NONLINEAR SURFACE WAVES IN WAVEGUIDES 
Waveguides have been studied typically in nanostructures such as dielectric\metallic, Kerr media\dielectric, 

dielectric\metallic\dielectric, metallic\dielectric\metallic or, recently dielectric/graphene interface. In a Kerr medium the 
change in the index of refraction or dielectric constant is driven by the electric field intensity source for isotropic 
medium and 2 or 1 dimensional electric field components for an anisotropic medium. Kerr-like media has been long 
associated with polarization field enhancement in nonlinear optics. This nonlinearity could be useful in field 
enhancement in plasmonics. The nonlinear media contributes to creation of temporal or spatial soliton propagation 
[1,27].  The models are approximated from Maxwell’s or Helmholtz vector equations to a scalar equation called the 
Nonlinear Schrödinger Equation (NLSE).  In the Kerr medium, the coefficient of the intensity of the electric field has to 
be considered self-focusing or defocusing.  The metallic/Kerr-like and dielectric/Kerr-like have been solved previously 
by G.I. Stegeman, J. Ariyasu, K. M. Leung, J.J. Burke, Jian-Guo Ma, Liu, Bing-Can, and others [7-14, 17, 18]. 
Recently, graphene has been material considered to behave similar to metal at certain temperatures, chemical potential, 
electron energy and incident wavelengths that can support creation of SPs at not only TM modes but also TE modes 
unlike metals cannot support creation SPs [16, 25, and 26].   

2.1 Theory 

     The initial step of the derivation is to solve for surface waves in a semi-infinite wave guide with a 
Kerr/graphene/dielectric interface. Starting with Maxwell’s equations, the next step to is to solve for the TM (or 
Transverse Electric) modes of the fields. Also, steps were taken to solve for the TE (or Transverse Electric) modes 
knowing the plasmonic waves also exist for similar to metal/dielectric interface due to the graphene layer. This layer is 
much thinner compared to the thickness of the nonlinear Kerr and dielectric media and can be approximated to 
boundary conditions including surface current density. Using the first integral approach , steps were taken to derive the 
dispersion relation and calculate the energy flux. In order to describe Kerr-like media propagation it is assumed the 
normalized Maxwell’s Equations in the frequency domain to  
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The constants μ0,ε , ε0, and σ  are the magnetic permeability, relative permittivity tensor, electric conductivity tensor. 

Expanding Maxwell’s equations into scalar equations and with zyx ,,, =∂
∂=∂ ηηη gives 

                  ( )zxzyxyxxxyzzy HHHEE ~~~ μμμ ++=∂−∂                                                                          (5a) 

                 ( )zyzyyyxyxzxxz HHHEE ~~~ μμμ ++=∂−∂                                                                           (5b)          

                ( )zzzyzyxzxxyyx HHHEE ~~~ μμμ ++=∂−∂                                                                            (5c) 
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−=′ , xkx 0=′ , yky 0=′ , and zkz 0=′ . With the normalized Maxwell equations, we take the 

prime away from the spatial for convenience ( xx →′ , yy →′ zz →′ ). We consider solving for the TM mode of 
the fields due to the fact plasmonic propagation existence found in this mode. Also, we consider propagation along the 

x axis so with βixx →∂
∂=∂    and the TM mode meaning 0=∂ y and 
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Here, since magnetic material is not considered, the relative permeability 1=yyμ . In the above equations the relative 

permittivity xxε  in the medium has an Kerr effect or  

          .2
0 xxxx Eαεε ±=                                                                                                                                (9) 

The constant x0ε  is the permittivity of the Kerr medium and α  is the coefficient of the electric field intensity. The 
purpose of the constant +α (-α) is for focusing (defocusing) Kerr medium. Equation (9) is the uniaxial approximation 
[1]. The dielectric variable zzε is approximated xzz 0εε ≈  [1,7-14]. We assume no conductivity z direction or zzσ ′ =0, 

but assume 0≠′xxσ . A more complete form of equations (6-8) is 
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These equations can also be combined into a scalar wave equation along with equation (9)  
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Equation (13) is the scalar equation with a Kerr effect with focusing. A proposed ansatz for the solution  
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The trigonometry identity of this function has terms such that as 0,0, →∂→∞→ zzx EEz . Next, substitute 
equation (16) into equation (13) which results are 
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The conditions to satisfy equation (17) with λ=1 are  
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The term 2Nγ must be greater than zero so for xE  as ∞→z 0)( →zEx . It also cannot be purely imaginary. 
The amplitude of the electric field can be complex and depend on the nonlinear coefficient, dielectric constant, and 
conductivity. Using equations (10-12), one can solve for the other field components 
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 Alternatively, the wave equation for defocusing in the TM mode is  

                  02222 =+−∂ xxxxz EENENE αγ                                                                                            (23) 

with the solution being 
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We can solve for the TE (or Transverse Electric) modes knowing the plasmonic waves also exist for similar to 
metal/dielectric interface due to the graphene layer. Again, this layer is much thinner compared to the thickness of the 
nonlinear Kerr and dielectric media and can be approximated to boundary conditions including surface current density. 
Also, the existence of TE mode solutions does not necessarily mean existence of plasmons at the interface like a 
metallic/dielectric interface does not in the TE mode. This depends on graphene conductivity calculation is more 
intricate than frequency dependent metal. In this mode, 0~

=== xzy EEH , so the based on equation (5) the electric 

field yE  wave equation is  
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The coupled equations in the TE mode are 
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The uniaxial approximation to the nonlinear dielectric material would be 

                        .
2

0 yyyy Eαεε ±=                                                                                                                   (31) 

The solutions and the coupled Maxwell relations can be used along with boundary conditions to derive dispersion 
relations at an interface such a dielectric/very thin graphene/Kerr medium. 

 

2.2 Boundary conditions in the waveguide 

 

If we first consider the TM mode equation (23) taking the first integral (multiplying xz E∂  and integrating as 
function of z) the results are 
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Here, C=0. At z<0, the wave is  
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sε is the dielectric constant at z<0. Assuming the graphene is sufficiently thin compared to the Kerr and dielectric 
media, it is approximated to boundary conditions of normal and tangential components  
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σ= . With equations (35a-d), at z=0 considering the TM mode, 
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assuming 0000 || xzxzx EEE == +− ==
and .2

00 xxnl Eαεε +=  In the case of the TM mode there is no  

jnB , j=1,2 field to be considered in this case. Using equations (20 and 21), we can calculate the power in the nonlinear 
medium using the equation for the Polynting vector  
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     The nonlinear equations for the TM and TE modes have analytical solutions that have surface wave characteristics. 
There solutions are similar to homogenous NLSE. These functions also account for conductivity which is a complex 
quantity. The above nonlinear equations accounted for self-focusing and defocusing. A dispersion relation for nonlinear 
surface waves with conductivity was derived but one has to match nonlinear intensity enhancement with SP excitation 
with graphene conductivity which is was not part of this study.  
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3. OPTICAL BISTABILITY 
Switching states in nonlinear optic devices are a subject of intense investigation recently in 

optics[6,15,21,24,32]. Optical devices are being studied and engineered to eventually replace electronic devices and 
carry out the same function but with better performance. This research has been further explored in nanotechnology or 
nanostructure devices at the subwavelength scale. Optical nonlinearity which is mostly studied at the microscale is 
applicable at the nanoscale. Electric Field enhanced dielectrics such as the Kerr effect can be useful in creating 
switching states in a dielectric/nonlinear Kerr medium, dielectric/metallic/nonlinear Kerr medium, and even a 
dielectric/thin graphene/nonlinear Kerr medium interface. These interfaces have optical bistable effects because of 
abrupt  discontinious jumps in solutions of the E

r
 and H

r
 fields or reflection (transmission) coefficients. Here, the 

purpose is to show bistable states and hysteresis with the excitation of surface plasmons establish a basis for a optical 
switching.  

First in nonlinear optics, nonlinear polarization displacement is  
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and 
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rrr
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For an isotropic medium ignoring the other tensor terms which are zeros, so polarization now is   

 EEEP
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with Χ1 and Χ3  being susceptibilities of nonlinearities of polarization.  The constants in equation (47) such that  
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The constants ε, ε0 and α are the nonlinear dielectric, dielectric, and nonlinear index of refraction of the Kerr medium.  

 
Figure 1. Transverse Magnetic (TM) incident, reflected, and transmitted Electric Fields. 
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TM Fields (with ω=frequency, c=speed of light) 
Incident waves   
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Considering  figure (1), the simple dielectric/nonlinear interface using Maxwell’s Equations in (cgs units), the fields are 
represented in Table 1. The fields are incident, reflected, and transmitted waves with directional 1k 2k wave vectors. 

All fields are assumed to be exp(-iωt) time dependent. The magnetic fields yH1  and yH 2 calculated in medium 2 is 
based on a component of Faraday’s Law in the frequency domain 
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The fields in the nonlinear medium are in the solution of the form 
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The nonlinear Helmholtz wave equation is  
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Equation (52) solved numerically but here the field will be approximated by equation (50). The equation can be 
approximated to model solitary propagation [27] and nonlinear surface waves (in previous section 2.1).  The 
components of the wave vectors given by  
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According to figure (1) and table (1), we apply boundary conditions of the electric and fields at z=0 resulting the 
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In equation (56), the second term on the right hand side is approximated to zero due to the slow vary electric field 
amplitude E2 as function of z.  For a boundary condition,  
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Keeping in memory that the transmitted angle θ2 in the nonlinear medium can be complex so the k2 and k2z in equation 
have to be calculated. The critical angle cθ  for TIR (total internal reflection) is  
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Substituting equation (55) into equation (56) with using equations (57 and 58), the Fresnel relations are 
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with  
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22 Eαεε += . Equations (62-63) are in terms of the incident angle, the dielectric constant, and the 

nonlinear dielectric medium. Referring back to equations (36-37), equations (55-56) and figure (1), a very thin layer of 
graphene can be approximated to conductivity [16] such that  
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for the TM mode. Boundary condition equation with conductivity (σ≡σxx  from the conductivity tensor) are 

         221111 cos)0(coscos θθθ EEE r =−                                                                                   (65) 

                 .cos)0( 11221111 θσEEkEkEk r −=+                                                                                      (66) 

  

This leads to the following Fresnel equations 

                 
)cos())cos(2(

)(sin1)cos(
)0(

111

1
2

2

1
112

21
θεθσ

θ
ε
ε

εθε

+

−+

= EE                   (67)                             

 

                  
)cos())cos(2(

)(cos)(sin1)cos(
)0(

111

1
2

21
2

2

1
112

21
θεθσ

θεσθ
ε
ε

εθε

+

−−−

= EE r                              (68)                                       

 

With σ=0, equations (67-68) return to equations (62-63). The conductivity for graphene media has to be carefully 
handled due its dependency on frequency, temperature, chemical potential, and electron energy.  Graphene conductivity 
physics is a separate area popular research [16,26]. The integral for graphene conductivity [16] is  
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The constants e, γ, μc, Ν ,h , and T are electron charge, decay constant,  chemical potential, electron energy, and 
temperature. The conductivity is characterized by interband and intraband transitions in the in the conduction and 
valance bands of graphene [28]. Equation (69) are results set in the complex domain so for certain frequencies the 
imaginary part of the conductivity becomes negative which means TE (Transverse Electric) surface waves can 
propagate along a waveguide graphene layer. At other frequencies only TM surface waves propagate along the 
graphene layer. However, this does not necessary account for a behavior of a graphene layer with a nonlinear Kerr 
medium. Metallic/Dielectric interfaces for waveguides do not support SPs TE modes [3,19]. Since the graphene 
conductivity is a complex number, the real and imaginary parts can be treated with care as dielectric equivalent similar 
to  
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This dielectric can approximate to 1 atomic layer in a waveguide which is part of the boundary condition instead of 
another waveguide layer [29]. In figure(2), the is a comparison Reflection coefficients from Fresnel’s Equations (62-63 
and 67-68 ) of the single interface dielectric/dielectric medium interface with and without conductivity.  The reflection 
coefficient is   

 

                                                      
.

2

1
1

E
rER ≡

                                                                                            (72) 

In figure (2), graphs (c) and (d) show total reflection greater 60 degrees with and without conductivity interface 
(equations 62-63, 67-68). The figures also include ε1> ε2 and ε1< ε2. The reflection equation (72) is not a good measure 
to handle nonlinear Kerr medium since the intensity is dependent on electric fields. This is similar problem with 
dispersion relations with nonlinear media [1, 6, and 15]. 

  

                                                   (a) 

 

                                                  (b) 
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                                                   (c) 

                                                (d) 

Figure (2). Reflection coefficients of Electric Fields with linear dielectrics with and  without conductivity (a) σ=-1and (b) 
σ=1i,with ε1=5, ε2=4 (c) ) σ=-1 and (d) ) σ=1i, with ε1=4, ε2=5. 

A better approach would to define the dimensionless intensity [4] 
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which are incident, reflected, and transmitted nonlinear measures knowing  
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Also the quantities can be converted back in terms of the Poynting vector  
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For a Kerr –like medium equations (73-76) can be defined as  
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which are incident, reflected, and transmitted nonlinear measures knowing  
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The angle 0
cθ  is the critical angle when nonlinear constant to the intensity is not present (α=0).  The ensuing equations 

based on equations (73-77)  
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for TIR and with σ≠0 
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Now nonlinear reflection can be calculated 
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In equations (79-82), U1r and U1 as functions of U2 can be determined with the incident angle θ1 and  the dielectric ε 
fixed. Equations (79-80 and 84-85) are real (transmission) and (82-83 and 85-86) are imaginary (TIR). In equations 
(81-82) when R=1 (U1r =U1 ) 
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In order for TIR mode to exist in the nonlinear medium,  
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.  

If U2 is equated in (equation 89) and solving for nonlinear critical intensity CU1  
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The TIR mode condition is more stringent with conductivity counted in equations (83-86). Assume conductivity to be 
imaginary σ=iσ’, so  
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In this case both expressions above have to be substituted back into equation (85-86) to get the nonlinear critical 
intensity CU1 with conductivity.  For the Transverse Electric (TE) case, expressions for the intensities with conductivity 
are  

ε1= ε2 
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U2 
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Since the waves are TE or ( )0=== yxz HEE  ,  conductivity is oriented  
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Again, in metallic/dielectric interface surface plasmons do not exist in TE mode, but they exist for this mode on a 
graphene dielectric interface or a multilayer graphene/dielectric waveguide [16,26]. In order for bistability to occur for 
one value U1 there should be multiple values of U2 leading to different values of  rU1  .  This expression for intensity can 
increase or decrease with no change in slope so a systematic approach to finding bistability is looking extremum points. 
In the case of conductivity being zero equations (81-82)  bistability exist with the nonlinear coefficient being negative 
(or α<0).  To check for slope change or switching points 
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with the zero slope value and switching value (ε=1)  
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If conductivity (with ε=1) is in the boundary conditions for TM mode the switching values are 
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In order to deal the nonlinear dielectric that is intensity dependent the nonlinear coefficient and the dielectric constant 
of the nonlinear dielectric has to be dimensionless measure to properly handle reflection and transmission quantities. 
By calculating the dielectric constant integral for graphene based on frequency, chemical potential, temperature, 
electron energy the reflection and transmission for intensities can be calculated with nonlinear waveguide. Lastly, one 
has to be able to take advantage of conductivity and required quantity of intensity for the Kerr effect to study the full 
features of this waveguide.   

 

4. MULTILAYER GRAPHENE AND ONE LAYER KERR MEDIUM  

 

    In the previous section the single layered dielectric/nonlinear Kerr dielectric with a thin graphene layer approximated 
to a boundary condition was presented to show optical bistability but here a multilayered configuration(figure 4 below), 
dielectric/dielectric/nonlinear Kerr dielectric with multiple thin graphene layers is considered. Similar incident, 
reflected, and transmitted waves functions for TM and TE modes are assumed. The approximated wave in the Kerr 
medium 3 is  
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with the constant d being the distance between medium1 and 3.  Again, for this case the derivative term in equation 
(101) is approximated to zero since it is slowly varying amplitude.  The angles in medium 2 and 3 can be complex so 
the wave vectors relations are  
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Figure 4. The multilayered waveguide with two thin graphene layers. 

the wave vectors relations are  
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Apply pertinent boundary conditions and z=0and z=d with continuity of electric and magnetic fields for TM modes 
with and without conductivity (σ) in matrix form 
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The plasmon angle [2-5] is given by 
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If we solve matrix equation (108) by reducing the matrix using Cramer’s rule for calculating the determinants and 
solving for    
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Without using known matrix methods the algebra can be quite difficult. The figure(5) below shows an example of 
switching state from R=1 to close R ≈0 with a complex dielectric silver (1.06×10-6m)  in medium 2 and nonlinear 
medium 3 with measures of dimensionless intensities. This approach can also be taken for TE surface waves setting 
boundary condition equations with correct conductivity constant and orientation. 

(a)      

(b)      

Figure (5). Reflection coefficients  intensities with σ=0 with linear dielectrics with and  without conductivity (a)θ1 =53.76, 
ε1=3.6, ε2=-57.8+i.6, and  ε03=2.25 (b) θ1 =53.90 ε1=3.6, ε2=-57.8+i.6, and  ε03=2.25. 

 

Abrupt 
switch in R 

Abrupt 
switch in R 
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5. CONCLUSION 
 

   Nonlinear surface wave propagation was presented in other order show that Kerr or Kerr-like material can support SP 
propagation especially with thin graphene layer between a dielectric and nonlinear dielectric. Using Maxwell’s 
Equations and pertinent boundary conditions analytical solutions for TE and TM modes for self-focusing and self-
defocusing, dispersion relation and expression for energy flux was derived. Next, reflection and transmission 
coefficients for a dielectric/nonlinear Kerr media presented to show that these quantities had to be calculated using 
dimensionless intensities that included the nonlinear coefficient and constant dielectric for that nonlinear medium. For 
the TM and TE mode reflection and transmission coefficients were presented that included a thin graphene layer. 
Briefly, the integral for dielectric of graphene presented. The incident frequency (among other quantities) impacts the 
conductivity of the graphene but the reaction of nonlinear Kerr material must be also considered. The approach to 
finding switching states for bistability would be to find the change in slope of the intensity equations that are used to 
calculate reflection and transmission coefficients. Lastly, an example for a multilayered configuration with multiple 
graphene thin layers was presented. The matrix equations were derived with and without conductivity in the TM mode. 
Reflection was calculated for multilayered configuration with silver in medium 2 (figure 5) to demonstrate switching in 
optical bistability.   
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