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ABSTRACT 

In our contribution we propose to use of a two-mode 
optical fiber as a primary source in a transmitting 
optical head instead of the laser diode. The distribution 
of the optical intensity and the complex degree of the 
coherence on the output aperture of the lens that is 
irradiated by a step-index weakly guiding optical fiber 
is investigated. In our treatment we take into account 
weakly guided modes with polarization corrections to 
the propagation constant and unified theory of second 
order coherence and polarization of electromagnetic 
beams. 

1. MOTIVATION

There are several basic methods that can be used for 
free space optic links (FSO) improvement with aspect 
of link availability. One of them is the use of partially 
coherent optical beams. This method is effective tools 
for suppressed of turbulence effects in atmosphere. 
This fact has been shown in many papers, for example 
in [7].  In our paper we would like demonstrate that 
optical fiber enables to generate a suitable partially 
coherent beam. Gauss-Schell beams (GSB) are 
ordinary considered in mentioned publications. But the 
fiber’s beam and GSB beam are distinct from one to 
another in the shape and also in the coherence 
properties. 

There is another reason for using an optical fiber for a 
generating of optical beams in FSO except the more 
immunity of fiber’s beam towards the turbulence. The 
concept with the optical fiber as a primary source 
instead of the laser diode is compatible with pure 
photonic transmitting head, i.e. the head without 
electronic blocks. But our main goal of this paper is to 
describe the fiber’s beam and to demonstrate that this 
beam has suitable properties towards to propagation 
through turbulent atmosphere.  

2. MODE STRUCTURE

We start our analysis from the distribution of the 
electric field in the step-index optical fiber. We assume 
that this fiber is weakly guiding and that the fiber is 
situated in a Cartesian coordinate system so that the 
axis of the fiber coincides with z axis of the coordinate 

system. In this case the electric field of the individual 
modes that are propagated in positive direction of the 
z-axis is described according these equations:
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where lJ  and lK  are Bessel function of the first kind 
and second kind of the order l  respectively, a  is a 
core radius, mlU ,  and mlW ,  are modal parameters for 

the core and cladding, q
ml ,  is the propagation constant

and zr ,,  are variables in the polar coordinate system 

and i  is the imaginary unit. The symbol q
ml ,E  stands

for a complex representation of a real monochromatic 
electrical vector of the angular frequency , 
nevertheless the multiplicative factor ti  exp  in
equations (1a) and (1b) was omitted. 
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Accordingly expressions (1), there exist the group of 
four modes for every modal numbers l  and m  if 

0l . We are distinguished these modes by a 
superscript q . If 0l  then there are only two modes
for modal numbers l  and m . The propagation constant 

q
ml ,  and the group velocity q

mlg ,  of individual modes
are possible to express as [1] 

,    , ,,,,,,
q
mlml

q
ml

q
mlml

q
ml ggg  (3) 

where ml ,  is a scalar propagation constant (the 

solution of scalar characteristic equation), q
ml ,  is the

polarization corrections, mlg ,  is the group velocity 

derived from purely scalar treatment and q
mlg ,  is the

polarization correction to the group velocity. 

The scalar propagation constant is the same for modes 
that are differ only by the index q , but polarization 
corrections may be different in this case.  Precisely, the 
modal parameters  mlU ,  and mlW ,  are also different for 
every mode and they should be denote also by the 
superscript q . However, we didn’t take into 
considerations the polarization corrections for modal 
parameters, because their influence is unimportant.  

Tab. 1: Parameters of modes in SMF-28 fiber at 
operating wavelength 830 nm. 

1
1,0E , 2

1,0E 1
1,1E , 3

1,1E
2
1,1E  4

1,1E  

mlU ,  1,87 2,92

mlW ,  3,16 2,23

ml,
1m 11101500,1 11088305,5

mlg ,
1sm 204302892,3 204216699,3

q
ml ,

1m -11,99 -28,6 -27,4 0,0

q
mlg ,

1sm -50,9 -596,7 -792,4 -505,3

In our analysis we are considered the two mode fiber, 
concretely the fiber SMF-28 manufactured by a 
Corning and operating at the wavelength 830 nm. We 
computed all mentioned quantity for this fiber and we 
summarize them in the previous table, Tab.1. The 
modes 1

1,0E  and 2
1,0E  are different only in the

polarization and all other parameters as propagation 
constant and group velocity are the same. Similarly, 
modes 1

1,1E  and 3
1,1E  have the same group velocity and

propagation constant but are different in the spatial 
configuration, see Eq. (1). The numeration of modes by 
the help of subscripts ml,  and superscript q  is often 

unfavourable in a mathematical formula, therefore we 
introduce a single subscript j  for every mode, so the j-
th mode is marked as jE . The assignment is obvious 
from the following table, Tab. 2. 

Tab. 2: The assignment between usual indexing of 
modes in two mode fiber and indexing by the help of 

single subscript. 
Mod 1

1,0E  2
1,0E  1

1,1E  2
1,1E  3

1,1E  4
1,1E  

j 1 2 3 4 5 6 

We are also indexing by the subscript j  parameters 
that belong to the individual mode, for example 
propagation constant j , group velocity jg , etc.. 

3. THE COHERENCE OF LIGHT IN AN
OPTICAL FIBER

The basic function for description of second-order 
coherence phenomena in the scalar theory of random 
process is the mutual coherence function [2]. In our 
case we must consider not scalar field but a vector field 
according (1), hence we must use the theory that 
enables the analysis of such field. The pure scalar 
description of the coherence phenomena in the optical 
fiber is described in [3]. For description of an 
electromagnetic beam was introduced the cross-
spectral density matrix W  defined in [4]. The cross-
spectral density matrix describes the coherence 
phenomena in a space-frequency domain. The 
description in a space-time domain is possible by the 
means of the mutual coherence matrix ,, 21 rr ,
defined in [6], whose elements are 
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where tEtEt yx ,,, 00 ryrxrE  stands for an
ensemble of the complex representation of the real 
electric vector again, but now for a polychromatic 
light. The brackets  denote the ensemble average, 
but because we are assumed that the electric field is 
stationary and ergodic, these brackets mean also the 
time average.  The elements of these two matrices W  
and  are connected by the Fourier transform 
(Weiner-Khintniche theorem) [2] 
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We can express the resultant electric field at the and of 
the optical fiber, whose length is z , as  

d  exp, ,,
0

tiziatz jj
j

j rerE , (6) 

where the summation is meant for all guided modes, 
ja  is a modal weight of the j-th mode, r  is a

position vector in the cross-section in the fibre (in a 
plane .constz ) and ,re j  represents the electric
vector of j-th mode, see Eq. (1), where the dependence 
of angular frequency wasn’t introduce. If we substitute 
the expression (6) into (4) then we obtain the mutual 
coherence matrix with elements 

,d d expexp
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where ,je  means the -component of the j-th mode. 

The modal weight ja  is possible to determine from
the knowledge of the distribution of electrical field at 
the input of optical fibre [1]  

.d  ,,  

,d ,,0,1

S

2*

2

S

*

rrere

rrerE

kkk

ks
k

k

N

N
a

 (8) 

The symbol ,0,rEs  in this equation (8) signifies the
electric vector at the input of the optical fiber and so 
this vector is given by the exciting source. We 
integrate in (8) over the infinite cross-section of the 
optical fiber. The equation (8) is valid for the weakly 
guiding fiber only. If we substitute the expression for 

ja  and ka  from (8) to the equation (7) we obtain 
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where ,, 21 rrWs  is the cross-spectral density matrix

at the input of the fiber, superscript H  means the 
transpose and conjugate matrix and we are introduced 
the matrix for the electric vector of j-th mode 

,,, 1,1,1 rrre yjxjj ee . (11) 

During the derivation of the (9) we assumed that the 
fiber is excited by the stationary and ergodic source.  

3.1 The excitation of the fiber by the laser diode 

The equation (9) is the desired expression for the 
mutual coherence matrix at the end of the optical fiber 
of the length z. We simplify this result provided the 
exciting source is a cross-spectrally pure quasi-
monochromatic and spatial coherent. In this case, the 
cross spectral density matrix of the source is given by 

,,,   ,,    

,S ,,,

21
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21

2121

yxEEJ

ss

rrrr

rrJrrW
 (12) 

where S  is the spectral density of the source and

21,rrJ s  is the mutual intensity (or equal-time mutual 

coherence matrix) of the source. This case complies 
with the excitation of the optical fiber by the laser 
diode. The spectral density S  of the quasi-
monochromatic source is negligible if the angular 
frequency isn’t near by a center frequency 0 . For that 
reason we can integrate in (9) only in a vicinity of the 
center frequency 0 . Further, for that the same reason, 
we ignore the frequency dependence of the electric 
vector of the individual modes, hence we are putting 

rerere jjj 0,,   for all j .  (13)
The frequency dependence of the propagation constant 
cannot be ignored, so we expand the propagation 
constant in a Taylor series and then we are considered 
only first two terms 

,    00
1

00 jjjjj g  (14) 

where jj 0 , jj 0  is the group delay of
the j-th mode for a fiber of the length 1 meter. Further, 
we take into account the natural shape of the spectral 
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line of the laser diode, hence the spectral density of the 
source is 

2
0

2S , (15) 

where the  is the width of the spectral line in the 
angular frequency domain. If we substitute from (12) 
and (14), (15) into (9) we obtain  

,expexp
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where  0jj aa  for all j, kjjk  and s

stands for the complex degree of temporal coherence 
of the source  

, expd expS 0
1

0
ii ss  (17) 

where s  is the coherence time of the exciting source, 
that is approximately equal to the reciprocal value of 
the spectral line bandwidth in the angular frequency 
domain , [2]. We can easy compute the cross-
spectral density matrix W  from the knowledge of the 
mutual coherence matrix (16) by the help of relations 
(5), the result of this computation is  

. exp exp   
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4. PROPAGATION OF THE CROSS-
SPECTRAL DENSTITY MATRIX

Now, we determine the cross spectral density matrix on 
the output aperture of the lens that is irradiated by the 
optical fiber. The end of the fiber is placed in the plane 

0z . The fiber length will be marked by the symbol 
d . The end of the fiber coincides with the focal plane 
of the lens, concurrently the focal length of the lens is 
f . The propagation of the cross-spectral density 

matrix through the paraxial optical system obeys the 
propagation law 
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where DCBA  and ,,  are elements of the transfer 
matrix. 

We can integrate separately in (19), i.e. at first 
according to variables 11,r  and then according to 

22  and r . Because the cross-spectral density of the 
matrix is expressed as the definite sum we can 
integrate term by term. If we use the relation (5) we 
obtain after some simplifications the mutual intensity 
matrix  
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where 

,d d cos 
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Integrals in (20) are the same except the sign before the 
imaginary unit, hence we distinguished them by the 
relevant superscript. From the relation (20) we can 
compute the most interesting quantity, as the optical 
intensity, complex degree of mutual intensity, degree 
of polarization, etc. We will be concentrated above all 
on the optical intensity and on the complex degree of 
spatial coherence. 

4.1 The distribution of the optical intensity 

If we are known the mutual coherence matrix we can 
calculate the optical intensity according to 

, 0,,, Tr, zzI (22) 

where the Tr  means the trace of the matrix. 

The rotary symmetry of the optical intensity, i.e. the 
independence of the optical intensity on the angular 
variable , is one of the natural requirements. It is 
evidently, that the optical intensity has the rotary 
symmetry at the output aperture of the lens provided 
the optical intensity has rotary symmetry also at the 
end of the optical fiber. The optical intensity at the end 
of the optical fiber can be express on the basis of (16) 
and (22), after some algebraic modifications, as   

,cos             

  ,
,

dd

AAIdI

kjkjjks
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where d  is the length of the fiber, jA  and j  are the 

modulus and the phase of the modal weight ja ,  jI  is 
the optical intensity of the individual modes and 

kjjk .  

Further, for simplicity we will be considered only 
guided modes with subscript 4,3,1j . We can easy 
reach this situation if we are exciting the fiber by the 
slightly tilted linearly polarized beam. Details about 
this excitation of the optical fibre are introduced in [1] 
page 431. All of the propagating modes 4,3,1j  have 
a different group velocity, see tab. 1, but because the 
polarization corrections jg  are very small, i.e. it’s 

valid jj gg , we can divide the optical fiber into 
tree regions accordingly to the value of the argument 

jkd . 

Region I: The condition (24) is valid in this case  

kjkjd sjk   ,,, . (24) 

Then the optical intensity is approximately 

4,3,1
,

j
jIIdI rrr . (25) 

The conditions (24) is valid for all supposed modes 
when 

m. 63
min 34

I
s

jk

sdd  (26) 

The calculations in (26) was execute for the parameters 
of the mode given by the Tab. 1 and for the laser diode 
source with 1 nm spectral line width.  

Region II: For this case is valid the condition 

,1413 sdd (27) 

but we haven’t any restriction between group delays of 
the modes 3e  and 4e . Due to (17) hold true 

0 1413 dd ss . (28) 

The conditions (27) is valid if 

m, 19,0
1413

II
ssdd  (29) 

The optical intensity at the end of the optical fiber is 
then given by   

,cos             

 2,

434334

4343
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dd

AAIdI

s

j
j rererr

 (30) 

There is the interferential term in (30) but this term can 
be disappeared if the value of the cosine term in (30) is 
zero, i.e. if the length of the fiber fulfils  

.1 andinteger  is  ,2
1

43

43
nn

n
dn  (31) 

For discrete length of the fiber nd  according to (31) 
the optical intensity is given by the relation (25) and 
it’s the exactly same as for the Region I.  

Region III: For this case we cannot do any 
simplification of the relation (23) on the basis of the 
value of the argument jkd . In the Region III is 
impossible to obtain the rotary symmetrical 
distribution of the optical intensity. 

Generally, we can say that in the Region I the guided 
modes don’t interfere, in the Region II interfere only 
the modes with the same mode numbers l , m  and 
finally all guided mode interfere in the Region III.  

5. GRAPHICAL ILUSTRATIONS

We demonstrate the distribution of the optical intensity 
and modulus of the complex degree of spatial 
coherence on the output aperture of the lens irradiated 
by the two mode optical fibre. The transfer matrix of 
the optical system is  

01
1

f

f

DC
BA

. (32)

The length of the optical fiber was chosen either in the 
Region I or in the Region II, but in this case with the 
discrete length equal to the length nd  according to 
(31). The optical intensity is determined by the 
expression (22), where  is given by (20). The 
complex degree of spatial coherence on the output 
aperture of the lens is defined  

0,,,Tr0,,,Tr

0,,,Tr
,,

2211

21
21 ff

f
f , (33) 

where elements of the  are given by (20) again. 
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The optical intensity is depictured on the Fig. 1. The 
modulus of the complex degree of spatial coherence is 
showed (Fig. 2) always for axial symmetric points 

12  on the figure Fig. 2. So it’s the function only 
of the two variables  and  

121        , . (34) 

But in our choice of the length of the fiber the complex 
degree of spatial coherence is independent on the 
variable . The power carried by the mode 1

1,0E  is 01P

and the power of the pair of modes 3
1,1E  and 4

1,1E  is

11P , concurrently the power of the these individual 
modes is the same. Integrals in (21) were calculated 
numerically by the help of the program MATLAB. 

Fig. 1. The relation of the optical intensity on the radial 
distance , the ratio of the power between individual 

modes is a parameter, cm 20f . 

Fig. 2. The relation of the modulus of the complex 
degree of spatial coherence on the radial distance , 
the ratio of the power between individual modes is a 

parameter, cm 20f . 

6. CONCLUSIONS

We investigated coherence properties of the light on 
the output aperture of the lens that is irradiated by the 
weakly-guiding optical fibre. In our treatments we 
considered also polarization properties of the electric 
field. We divided the optical fibre on the basis of the 
comparison of the coherence time of the source and the 
time delay of the individual modes into tree regions. 
The two-mode optical fibre is the suitable light source 
for FSO only in Region I and Region II, because only 
in these regions the optical intensity can be rotary 
symmetrical. It is apparent from Fig. 1 and Fig. 2 that 
the properties of the fibre’s beam are noticeably 
different from Gauss-Schell model of the beam. There 
exist points, see Fig. 2, that are completely non-
coherent, i.e. the modulus of the complex degree of the 
spatial coherence for these points is zero. The 
distribution of the optical intensity at the end of the 
optical fibre whose length belong to the Region I is 
independent on the propagation constants of the 
modes, hence the distributions of optical intensity is 
also independent on vibrations, temperature variations 
etc. in contrast to the Region II.  
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