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ABSTRACT 

Metis is a multi-wavelength coronagraph onboard the European Space Agency (ESA) Solar Orbiter mission. The 
instrument features an innovative instrument design conceived for simultaneously imaging the Sun's corona in the visible 
and ultraviolet range. The Metis visible channel employs broad-band, polarized imaging of the visible K-corona, while 
the UV one uses narrow-band imaging at the HI Ly , i.e. 121.6 nm. 

During the commissioning different acquisitions and activities, performed with both the Metis channels, have been carried 
out with the aim to check the functioning and the performance of the instrument. In particular, specific observations of 
stars have been devised to assess the optical alignment of the telescope and to derive the instrument optical parameters 
such as focal length, PSF and possibly check the optical distortion and the vignetting function.  

In this paper, the preliminary results obtained for the PSF of both channels and the determination of the scale for the 
visible channel will be described and discussed. The in-flight obtained data will be compared to those obtained on-ground 
during the calibration campaign. 
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1. INTRODUCTION 
Solar Orbiter (SO) is a mission dedicated to study solar and heliospheric physics[1]. It was selected as the first medium-
class mission of ESA's Cosmic Vision 2015-2025 Programme. With a combination of in-situ and remote sensing 
instruments, SO is conceived for the circumsolar region exploration with the purpose of giving an answer to the scientific 
questions on how the heliosphere is generated and controlled by the Sun. 

Launched in February 2020, the mission will provide close-up, high-latitude observations of the Sun. SO will have a 
highly elliptic orbit (0.9 AU at aphelion and 0.28 AU at perihelion). Thanks to its mission profile, for the first time the 
poles of the Sun and the circumsolar region will be seen and studied from a privileged point of view near the Sun.  

Soon after launch SO underwent the Near Earth Commissioning Phase (NECP), the spacecraft and the payload were 
functionally checked and calibrated. Also the Metis coronagraph [2], which is one of the remote sensing instruments 
mounted on-board the SO spacecraft, was switched on, functionally tested and characterized [3]. In particular, the two 
mechanisms of the instrument, the one-shot sealing cap and the internal occulter mechanism (IOM), were activated. 

Metis has been conceived to acquire both visible and UV images of the solar corona. It has two channels: one to study the 
UV HI Lyman α at 121.6 nm, and the other for the polarized visible light band (580 – 640 nm).  

Metis adopts a configuration called ‘inverted externally occulted’ that is able to prevent the solar disk light to enter the 
telescope; this light is back reflected outside by a mirror (M0) [4]. The passing coronal light is collected by the Metis 
telescope. Common to both channels, the Gregorian on-axis telescope is centrally occulted and both the primary and the 
secondary mirrors have annular shape. The on-axis field is not available since it is anyway completely blocked by the M0 
mirror; for the alignment and test on-ground an ad hoc alignment set-up has been developed for the telescope alignment 
[5].  

In this paper, after a description of the Metis optical design, the preliminary measured telescope performance in-flight will 
be presented and compared to the one obtained during the on-ground calibration campaign [6]. 

 

Figure 1. Metis layout. The raytraces of the two channels are depicted separately. On the top the UV channel and on the 
bottom the VL one with a zoom on the VL polarimeter assembly. 

2. METIS OPTICAL DESIGN AND PERFORMANCE 

2.1 Metis optical design 

The Metis instrument is conceived to image the solar corona from a near-Sun orbit in two different spectral bands: the UV 
narrow band HI Lyman-  at 121.6 nm, and the polarized broad-band visible light (580 – 640 nm). The instrument is 
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designed to image the structure and dynamics of the full corona in the range from 1.6 to 3.1 solar radii (Rs), at minimum 
perihelion distance (0.28 AU), and from 2.8 Rs to 5.5 Rs, at 0.5 AU. The annular Field of View (FoV) covered by the 
instrument is between 1.6° and 2.9°, and the attained spatial resolution is 20".  

The “inverted externally occulted” configuration (see Figure 1) [7][8] allows to reduce the thermal loads inside the 
instrument. The inverted external occulter (IEO), a small aperture on the spacecraft thermal shield, also acts as the entrance 
pupil of the instrument. The solar disk light passing through the IEO is back-reflected by a spherical heat-rejection mirror 
(M0) and focused on the IEO itself. The coronal light, on the other hand, is collected by an on-axis Gregorian telescope.  

The primary mirror (M1) focuses the gathered coronal light in its focal plane, where a field stop (FS) is placed and limits 
the outer FOV of the coronagraph. Then the secondary mirror (M2) focalizes the light again; part of the light passes 
through the interference filter (IF) and then is collected by UV detector; the other part is reflected by the IF and is directed 
to the polarimeter assembly. 

Stray light minimization is a mandatory goal in any coronagraph and the worst offenders are the surfaces hit by the direct 
solar disk light, IEO and M0. The internal occulter (IO) and the Lyot stop (LS) are, respectively, conjugated with the IEO 
and M0 via the primary mirror M1. IO blocks the solar disk light diffracted by the IEO edge, while LS blocks the light 
diffracted by the M0 edge [9][10]. 

Metis consists of a single optical head that incorporates 2 different channels: a UV imaging channel and a polarimeter 
visible light (VL) channel. The telescope optics (M1 and M2) and the stop system (IEO, M0, FS, IO and LS) are common 
to both channels, while the VL channel has a dedicated relay optics and a polarizing group. Each channel has its own 
detector respectively called UVDA and VLDA. 

The Metis instrument optical specifications are summarized in Table 1. 

Table 1 Summary of Metis instrument optical characteristics. 

Metis instrument optical specifications 

FoV 
1.6°-2.9° 
1.7-3.1 Rs @ 0.28 AU – 3.0-5.5 Rs @ 0.5 AU 

Telescope type Externally occulted on-axis Gregorian 

Effective focal length 
VL: 200 mm  
UV: 300 mm 

Wavelength range 
VL: 580-640 nm 
UV: 121.6 ± 10 nm 

Spatial resolution 
VL: < 20 arcsec @ > 2° 

< 40 arcsec @ < 2° 
UV: < 20 arcsec 

Average Straylight 
(Bcor/Bsun) 

VL< 10-9 
UV< 10-7 

Detectors 
VL: 2048x2048 10 μm pixel size 
UV: 1024x1024 15 μm pixel size (eq. 30 μm) 

 

2.2 Estimated UV and Visible-light imaging path optical performance 
The coronal light collected by the Metis Gregorian on-axis telescope is divided in two different paths: 

• narrow band ultraviolet HI Lyman  (121.6 nm) path, corresponding to the picture on the top in Figure 1; 

• polarized visible-light (580-640 nm) path, corresponding to the picture on the bottom in Figure 1. 

The UV light detector assembly (UVDA) consists of three main elements: (a) an intensifier with KBr photocathode in 
optical contact (via a phosphor screen) with (b) a fiber optics 2:1 de-magnifying coupler connected to (c) a CMOS APS 
STAR1000 (1k x 1k format, 15 μm square pixel). So the equivalent pixel size at the focal plane for the UV channel is 30 
μm. The visible light detector assembly (VLDA) consists of a visible light camera equipped with a CMOS active pixel 
sensor (APS), 2k x 2k, 10 μm pixel [2]. 
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The two different UV and VL paths are separated through a UV interference filter (IF), inserted in the converging beam 
exiting M2, and inclined at 12° with respect to the optical axis of the telescope. The UV narrow bandpass interference 
filter acts as VL-UV dichroic beam splitter by selecting the 121.6 nm UV band in transmission and reflecting the VL. 

The mirrors are coated with Al+MgF2 with high reflectivity in the VL band and optimized to have an enhanced reflectivity 
at 121.6 nm [11] [12]. 

The VL path aberrations are rather limited and the theoretical performance is diffraction limited. See Figure 2 for the 
expected VL channel performance in terms of RMS spot radius, both the tangential (tg) and radial (r) RMS have been 
calculated. Tangential and radial refer to the solar corona.  
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Figure 2. VL theoretical diffraction RMS spot size. 

The UV path performance is not radially symmetric, the IF is a thick 6 mm tilted plate placed in a converging beam, thus 
some aberrations (mainly astigmatism and coma) are introduced by the filter [13]. To mitigate these aberrations, the IF 
surfaces are not parallel but tilted by about 0.15°. The IF is made of a birefringent material, another birefringent window 
is mounted in front of the detector. 
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 (a) (b) 

Figure 3. Metis UV channel performance. (a) Geometric spot diagrams over the FoV both ordinary and extraordinary rays 
have been depicted; the square boxes have 60 micron size equivalent to 2x2 pixels of the detector. The Airy disc is also drawn 
for comparison. (b) Geometrical RMS spot radius versus FoV compared with the diffraction limited RMS spot radius and 
with the detector equivalent pixel size. 

The theoretical optical performance of the UV channel, including an estimation of the diffraction effect, is shown in Figure 
3. In Figure 3(a) the spot diagrams over the FoV are shown; the different colors refer to ordinary and extraordinary rays 
for both the IF and the detector window. In Figure 3(b) the geometrical RMS spot radius calculated at the UV paraxial 
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focus for both the tangential and radial direction is compared with the diffraction RMS and with the equivalent pixel size 
of the UV detector. The UV pixel equivalent size considered is 15 μm, i.e. half of the UV detector equivalent pixel size.  

2.3 Metis vignetting function 
The light passing through the Metis telescope body is highly vignetted by M0 and then vignetted further by the IO and 
LS. Moreover, on the diagonals of the image, the two four-spider systems supporting respectively the M0/Lyot Stop 
assembly and the Internal Occulter/Field Stop assembly are vignetting the beam even more. In Figure 4(a), the whole 
opto-mechanical layout of Metis is presented and in the bottom right part of the picture the two Internal Occulter/Field 
Stop and M0/Lyot Stop assemblies with the supporting spiders are shown. The internal occulter mechanism, with the four-
spider system clearly visible, is shown in Figure 4 (b). 

  
 (a) (b) 

Figure 4. In (a) opto-mechanical subsystems of Metis. In (b) picture of the flight model of the internal occulter mechanism 
with the four-spider system painted in black clearly visible [2]. 

 

 (a) (b) 
Figure 5. Dependence of the Metis vignetting function on the radial field of view. (a): Gray scale representation of the 

bidimensional vignetting function, as obtained by ray-tracing; overlapped dashed circles represent 1° (red), 2° (orange), and 
3° (blue) FoVs. (b): plots of the vignetting function along the radial directions shown in (a) as a function of the different 

colours. 

ICSO 2020 
International Conference on Space Optics

Virtual Conference 
30 March-2 April 2021

Proc. of SPIE Vol. 11852  1185210-6



 
 
 
 

Over the nominal FoV of the telescope the fraction of unvignetted rays is always less than 50%. See Figure 5 for the Metis 
theoretical vignetting function given both in terms of 2D image in (a) and as radial profiles in (b). The further vignetting 
due to the spiders is clearly visible by comparing the profiles at 0° and 90° with the 45° and 135° ones. 

3. IN-FLIGHT OPTICAL PERFORMANCE 
On the 9th of February 2020, the Solar Orbiter spacecraft has been launched by an Atlas V rocket from Cape Canaveral. 
Soon after launch, the switch on and commissioning of the payload instruments started. 

Star observations with Metis are very important to characterize and calibrate the instrument, but at present only some 
specific sequences have been run specifically for stellar calibration. Anyway in the VL channel stars are commonly seen 
in the FoV since some are bright enough to stay above the coronal continuum. Some specific UV stars, useful to 
characterize the UV channel, have also been observed. 

3.1 UV channel performance 

For the UV channel α and ρ Leonis stars have been observed transiting throughout the Metis FoV from east to west 
approximately at the center of the frame, this direction corresponds to the Y direction of the detector. Images have been 
acquired using masking and radialization, an example of the images is reported in Figure 6(a). 
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Figure 6. (a) UV image of α Leo, the bright spot on the top, acquired with masking and radialization. (b) UV PSF measured in-flight 

using α Leo. 

A gaussian fit has been used to estimate the FWHM of the images of the stars and the radial and tangential FWHM have 
been derived (see Figure 6(b)). Also a comparison with the data obtained on-ground has been done (see Figure 7a and b). 

The preliminary estimated UV PSF in-flight is consistent with the one measured on-ground, even if the one measured on-
ground has been measured along the X axis of the detector, while the one in-flight is measured along the Y axis. In fact, 
the spots are elongated in different directions, i.e. in flight they are along the X detector direction and on-ground along the 
Y (see Figure 6(b) and Figure 7(a)), nevertheless the PSF radial and tangential FWHM values can be directly compared. 
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Figure 7. UV PSF measured on-ground. In (a) appearance of the acquired pinhole images, in (b) measured radial and tangential 
angular resolution and FWHM of the PSF. 

 

3.2 VL channel performance 
During the IT-6B1 activity [3], performed in mid-May 2020, some of the brightest stars of the Taurus constellation have 
been observed. Unfortunately, this sequence had been foreseen with the aim of doing the IO coarse alignment, and so not 
all of the acquired images are useful and moreover, due to the IO different position from one image to the other, the 
vignetting function was slightly varying over the different acquired images. Nevertheless, some of the stars have been 
recognized and their PSFs have been measured. 

 

Figure 8 Example of a VL image acquired during the IT-6B1. The identified stars are highlighted and named. 

In Figure 8 an example of a VL acquired image is given. Superimposed on the image the detected stars are clearly marked 
with a blue star symbol and the name and the visual magnitude (mV) of each star are written in green color. This image 
has been rotated in order to be quasi east-west (EW) oriented along the horizontal direction and south-north (SN) in the 
vertical direction. The red circles correspond with the inner and outer dimensions of the FoV of Metis, the inner is 
determined by the vignetting function while the outer by the field stop size. The red cross, almost at the center of the 
image, corresponds to the boresight. 
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In Table 2 a summary of the brightest identified stars is given. The spectral types were obtained from the Simbad database 
[14]; in parenthesis spectral type from the Bright Star Catalog 5th Revised Edition [15]. The R magnitude is also provided 
when available. The R band is centered at 658 nm, and thus it is closer than the V band to the Metis VL channel wavelength 
band (580-640 nm). 

Table 2 Summary of brightest stars detected by Metis during the IT-6B1 activity performed 15 May 2020 

HD Name Sp Type B-V mV mR 

27697 δ1 Tau 
G9.5IIICN0.5 
(K0-IIICN0.5) 

0.98 3.76 5.56 

27819 δ2 Tau A2Vs (A7V) 0.15 4.80 4.64 

27962 δ3 Tau 2IV-Vs (A2IV) 0.07 4.30 6.18 

27934 k1 Tau A7IV-V 0.17 4.20 N/A 

27946 k1 Tau F0Vn (A7V) 0.28 5.26 N/A 

28305 ε1 Tau G9.5IIICN0.5 1.01 3.53 N/A 

26162 ω1 Tau K2III 1.08 5.50 N/A 

28226 - Am 0.27 5.71 5.55 

26038 - K5III 1.10 5.94 N/A 

 
At least 5 of the acquired images have been judged worth detecting the stars and measuring the FWHM of their PSFs.  

A composite image has been created, after bias and dark removal, summing some of the different consecutive images 
acquired. The SO spacecraft is pointing the Sun, so the stars appear to move from one frame to the other approximately 
along the columns of the detector which are approximately oriented EW with respect to the Sun. 

 

Figure 9. Composite VL image. In the insets, zooms of some of the star images. 
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See Figure 9 for the composite image and the appearance of the stars moving on the detector. On the whole image some 
zoomed insets are depicted to highlight the regions where the stars are visible. 

The 5 considered images were acquired respectively 30, 100, 10 and 70 minutes apart one from the other and the stars 
appear to move from left to right in the frame, i.e. EW. 

The VL channel images analyzed so far are of stars not completely well exposed and not uniformly distributed on the 
detector. There are hints, though to be assessed, that on the edges of the FoV the PSF is larger than expected, particularly 
in the region where the image vignetting is highly determined by the spiders obscuration as discussed in par. 2.3.  

The quite well-exposed stars analyzed, epsilon and delta Tau, suggest that the mean FWHMs, on the left side of the 
detector, are of the order of 1.5-2 px (see Figure 10(a) and (b)), which are in quite good agreement with the data acquired 
on-ground (see Figure 11). 
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 (a) (b) 
Figure 10 In (a) PSF FWHM (radial, tangential and mean) measured for δ1 Tau, in (b) for ε1 Tau. 

 

Figure 11 VL channel PSF measured on-ground. 

3.3 Spatial scale 
For the VL channel, having about 10 identified stars in the FoV, an initial estimation of the plate scale and pointing of the 
spacecraft have been done. 

Firstly, the positions of the identified stars on the sensor have been determined using the peak pixel, i.e. the pixel with the 
highest DN value, of each stellar PSF. 
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Then a set of linear transformations has been defined mapping sensor coordinates to celestial coordinates, using the 
convention detailed in [16], and consisting of a rotation, a translation and a scaling, followed by a gnomonic projection. 
The corresponding five parameters (the angle of rotation, a pair of translation coordinates and a pair of scaling factors) 
were then optimized by minimizing the distance on the sensor between the expected position with the measured position 
of each visible star on the sensor, using a least squares fitting algorithm. 

The resulting scaling factors along the X and Y direction of the detector were 10.139 and 10.127"/px respectively, with a 
standard deviation of 0.005”/px, which are in agreement with the measurements done on-ground. The measured on-ground 
focal length for the VL channel after alignment is about 203.5 mm, that is slightly larger than the theoretical 200 mm one. 
The measured on-ground focal length corresponds to a pixel scale of about 10.13"/px. 

4. CONCLUSIONS 
Some results on the in-flight optical performance of the Metis coronagraph have been presented. As a preliminary 
achievement, the PSF FWHMs of the UV channel measured in-flight are perfectly matching those measured on-ground. 
As for the VL channel, the present available images are not entirely useful to correctly determine the PSF behaviour all 
over the FoV. Future specific acquisitions will be envisaged to better characterize the system performance; in particular 
to better sampling the FoV with well exposed stars, to correlate the optical characteristics of one channel with the other 
one and to verify the relative alignment. 

For the VL channel, also a preliminary assessment of the plate scale has been done. The results obtained are in agreement 
with the measurements done during the on-ground calibration campaign. 
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