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ABSTRACT

Deep learning (DL) are being extensively investigated for low-dose computed tomography (CT). The success of
DL lies in the availability of big data, learning the non-linear mapping of low-dose CT to target images based on
convolutional neural networks. However, due to the commercial confidentiality of CT vendors, there are very few
publicly raw projection data available to simulate paired training data, which greatly reduces the generalization
and performance of the network. In the paper, we propose a dual-task learning network (DTNet) for low-dose
CT simulation and denoising at arbitrary dose levels simultaneously. The DTNet can integrate low-lose CT
simulation and denoising into a unified optimization framework by learning the joint distribution of low-dose CT
and normal-dose CT data. Specifically, in the simulation task, we propose to train the simulation network by
learning a mapping from normal-dose to low-dose at different levels, where the dose level can be continuously
controlled by a noise factor. In the denoising task, we propose a multi-level low-dose CT learning strategy to train
the denoising network, learning many-to-one mapping. The experimental results demonstrate the effectiveness
of our proposed method in low-dose CT simulation and denoising at arbitrary dose levels.
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1. INTRODUCTION

X-raycomputed tomography (CT) is widely used in clinical diagnosis and treatment because of its ability to
image the body’s three-dimensional anatomy in a non-invasive manner. However, ionizing radiation generated
during CT scanning will accumulate in the human body, and high radiation doses will induce the risk of cancer
in human tissues and organs.1 Given these risks, efforts have been made on reducing the radiation dose and
the principles of As Low As Reasonably Achievable (ALARA) is profoundly practiced in clinical CT imaging.2

However, reducing the radiation dose inevitably increases the noise and artifacts of reconstructed CT images,
which compromises the diagnostic performance. Consequently, improving the image quality of low-dose CT
(LDCT) has become a hot topic in medical imaging over the past decade.

Recently, with the rapid development of deep learning (DL) technology, the LDCT imaging algorithm is dom-
inated by convolutional neural network and has achieved unprecedented success. DL-based algorithm learns the
mapping from LDCT projection/image to normal-dose CT (NDCT) ones by designing an elaborate convolutional
neural network (CNN), such as RED-CNN,3 Wavelet networks,4 and Tensor-Net.5 A key factor in the success of
these supervised algorithms is the availability of big data, that is, a large amount of paired LDCT and NDCT
images.6,7 Despite its superior denoising results, some issues still must be resolved before the DL models can
be widely deployed in clinic. First, given the increase in total radiation dose, matched LDCT and NDCT data
cannot be obtained in clinical practice. As a result, true NDCT and LDCT paired data are not available. Second,
traditional LDCT simulation methods8 usually insert noise into the raw projection data, however, very few raw
data are publicly available to simulate paired training data, which degrades the generalization performance of
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the network. Third, most of DL-based models are designed for specific dose levels but perform poorly at lower
doses.

To solve above problems, in this work, we propose a dual-task learning network (DTNet) for low-dose CT
simulation and denoising at arbitrary dose levels. The presented DTNet can integrate LDCT simulation and
denoising into a unified framework by learning the joint distribution of LDCT and NDCT data. Specifically, we
first propose to train the simulation network by learning a mapping from NDCT to LDCT at different levels,
where the dose level can be continuously controlled by a noise factor. In the denoising task, we present a multi-
level LDCT learning strategy, which uses LDCT data of different levels to train the denoising network. Once
trained, DTNet can be used for multi-level LDCT images simulation and denoising simultaneously, which greatly
improves the applicability and generalization performance of the model.

2. METHODOLOGY

2.1 Low-dose CT Simulation Network

Let x ∈ IH×W denotes a NDCT image and y ∈ IH×W denotes the corresponding LDCT image. Low-dose
CT simulation is an inverse process of LDCT denoising, which learns the opposite mapping from x to y. To
precisely control the noise level of the generated LDCT image, we propose a noise control factor guided LDCT
simulation scheme, as illustrated in Fig. 1 (a). Specifically, given a NDCT image and a mask image with value
of 1, the simulator network encodes them into high-dimensional features for coupling and progressively decoding
to reconstruct LDCT image of different levels, where the dose level can be continuously controlled by a noise
factor. In addition, instead of directly applying the pixel-wise loss to the target image, we use a gaussian filter
to extract the first-order statistics information of simulation and reference LDCT noise, and then constraint it
with the MAE loss function, which can be formulated as:

LS = argmin
θS

N∑
i=1

||GF (S(xi,m · kj)− xi)−GF (yi
j − xi)||1. (1)

Here, m is the mask image with value of 1, kj = 1, ..., j is the noise factor that controls the simulated dose level
j. θS represents the parameters of simulation network S. GF is a 2d Gaussian filter convolution kernel with a
size of 5× 5.

2.2 Low-dose CT Denoising Network

Typically, the DL-based denoising problem is to build a prediction network R(·) that learns the non-linear
mapping from y to x, i.e., R : y → x. In clinical, CT images of various dose levels may be obtained to meet
the clinical diagnosis demands. In Fig. 1 (b), we propose a multi-level low-dose CT learning strategy to train
the denoising network with different levels low-dose CT data by minimizing the mean absolute error (MAE) loss
function, which is expressed as:

LR = argmin
θR

N∑
i=1

||R(yi
j)− xi||1. (2)

Here, yi
j , i = 1, ..., N, j = 1, ...,M represents the LDCT images, where N is the total number of LDCT images

and M is number of dose levels. θR represent the parameters of denoising network R. Once trained, the denoising
model can be applied to LDCT reconstruction at different dose levels in the clinic.

2.3 Dual-task Learning Network

To jointly optimize low-dose CT simulation and denoising tasks, we adopt the dual-task learning network (DT-
Net), which uses a joint discriminator to alternately optimize the simulation and denoising network by learning
the joint distribution p(x, yj) of LDCT and NDCT data, as shown in Fig. 1 (c). Let pS(x, y

j) and pR(x, y
j)
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Figure 1. The overall structure of the proposed DTNet framework. (a) Low-Dose CT simulation module, (b) Low-Dose
CT denoising module, (c) Dual-task learning module. m is the mask image with value of 1. kj is the noise scale factor.

represent the pseudo joint distribution of simulation and denoising task, respectively. The dual adversarial loss
can be defined as follows:

min
S,R

max
D

(S,R,,D) = E(x,yj)vp(x,yj)[D(x, yj)]

− λS · E(x,ŷj)vpS(x,yj)[D(x, ŷj)]

− λR · E(x̂,yj)vpR(x,yj)[D(x̂, yj)].

(3)

Here, E[·] denotes the expectation operator, D represents the discriminator, which is used to receive the image
pair (x, yj), (x̂, yj), (x, ŷj) and distinguish them as real or fake samples. The hyper-parameters λR and λS

controls the weight of GAN loss.

The final objective function for optimizing DTNet can be formulated as:

min
S,R

max
D

(S,R,D) + α · LS + β · LR, (4)

where α and β are the weight parameters that control the trade-off between adversarial loss and fidelity loss of
simulation and denoising tasks.

3. EXPERIMENTS

3.1 Dataset

The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge dataset9 published by Mayo Clinic is used to
evaluate the effectiveness of the proposed DTNet model. This dataset contains 10 anonymized patient normal-
dose raw projection data, which were acquired using the Somatom Definition AS+ CT system under 100kV
or 120kV and automatic exposure controlling mode, and simulated quarter-dose projection data. In order to
obtain LDCT data at different dose levels, we re-simulated 1/4, 1/8, 1/16, 1/20-dose projection data using the
corresponding simulation algorithm8 to insert quantum and electronic noise into the normal-dose projection data.
In this study, we selected seven patients with a total of 17056 image data pairs for training. Specifically, 4568
image pairs collected from two patients are used to validate the performance of DTNet, and 2100 image pairs
from the remaining one patient are selected as the testing set.
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Figure 2. The simulation and denoising results at different dose levels of proposed DTNet. The display window of images
and zoomed-in ROIs is [−140, 260] HU. The display window of NPS maps is [0 3000] HU2mm2.
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Figure 3. Arbitrary dose levels simulation results of proposed DTNet. From the left to the right column, the noise level
of CT image gradually increases as the noise factor kj increases. The display window is [−140, 260] HU

3.2 Implementation details

In our experiments, the proposed DTNet model consists of three sub-networks: simulator S, denoiser R and
discriminator D. For S and R, we use the same generator network structure UNet,10 which contains an encoder
and decoder. The discriminator D has a similar structure to the PatchGAN.11 The DTNet model is optimized
in an alternating manner using Adam algorithm. The learning rates of S, R and D are set to 1e−4, 1e−4, and
2e−4, respectively. The hyper-parameters of loss function are selected to be α = 100, β = 10, λR = λS = 0.5.
During training, we randomly extracted 4 patches of size 128 × 128 as input in each iteration, D is updated
three times while S and R are updated once. All networks are implemented using Pytorch and trained with an
GeForce RTX 3090 GPU.
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Table 1. PSNR and SSIM Quantitative comparison of DTNet denoising results at different dose levels.

Dose RED-CNN WGAN-VGG DTNet

1/20
36.5572± 2.3307 33.3125± 2.5499 36.6999± 2.3983

0.8665± 0.0573 0.7543± 0.0994 0.8677± 0.0583

1/16
36.8386± 2.3549 34.0276± 2.5127 36.9687± 2.4371

0.8705± 0.0561 0.7795± 0.0908 0.8715± 0.0574

1/8
37.6845± 2.5182 35.8733± 2.5104 37.7859± 2.5292

0.8839± 0.0533 0.8371± 0.0712 0.8866± 0.0515

1/4
38.6890± 2.6873 37.4532± 2.5651 38.9779± 2.7158

0.9024± 0.0472 0.8789± 0.0557 0.9101± 0.0426

4. RESULTS

Fig. 2 shows the simulation and denoising results of abdominal CT image at five different dose levels: normal-
dose, 1/4, 1/8, 1/16, 1/20-dose. In the simulation task, the corresponding simulation noise factors are set to
0, 1/4, 1/8, 1/16, and 1/20, respectively. Note that the noise factor equal to 0 means that it does not insert
any noise into the NDCT image. It can be observed that the proposed method can simulate LDCT images of
different dose levels and the learned noise intensity and characterization are similar to the reference images. In
addition, we also calculate the noise power spectrum (NPS) maps of magnified ROIs to evaluate the statistical
property of noise. We can observe that the NPS of generated LDCT images is very close to the reference images.
When the noise factor is set to 0, only little noise is embedded in the output image, which can be seen from the
ROI and the corresponding NPS. To verify the robustness of DTNet in simulating other dose levels which are
not including in training data, as shown in Fig. 3. It can be seen that the noise intensity of simulated LDCT
images continuously increases with the increase of noise factor kj . This demonstrates that the proposed DTNet
has the ability to simulate the realistic LDCT images and can control the noise level well.

In the denoising task, the last row in Fig. 2 shows that DTNet can efficiently suppress noise and artifacts at
difference dose levels. In particular, for normal-dose images with a small amount of noise, we can also remove the
noise without smoothing the image content. And for ultra-low doses, such as 1/20-dose, some small structures
are completely drowned out by noise and are difficult to recover well. Therefore, ultra-low dose scanning can
be used for special imaging tasks where anatomical details are not important, such as localization imaging. To
quantitatively analyze the denoising performance of DTNet, we calculate the peak-to-noise ratio (PSNR) and
structural similarity (SSIM), as summarized in Table 1. We can see that DTNet obtains the best quantitative
values at different dose levels compared to RED-CNN3 and WGAN-VGG,12 which is consistent with the visual
evaluation.

5. CONCLUSION

In this paper, we have presented a dual-task learning network (DTNet) for LDCT simulation and denoising tasks.
In the simulation task, the simulation network encodes the NDCT image and mask image into high-dimensional
features for coupling and decoding to generate LDCT images at different dose levels, where the dose levels can
be controlled by a noise factor. In the denoising task, the multi-level LDCT learning strategy is used to train
the denoising network, which can learn many-to-one end-to-end mapping. The presented DTNet integrates the
LDCT simulation and denoising tasks into a unified optimization model. Both the quantitative and qualitative
evaluation results have demonstrated the promising performance of DTNet in terms of LDCT simulation and
denoising. In the feature, we will further improve the performance of DTNet by incorporating advanced network
and prior information.
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