Blind channel identification
and extraction of more sources than sensors

P. Comon®4

¢ I3S-CNRS, Algorithmes/Euclide, 2000 route des Lucioles,
Sophia-Antipolis, F-06410 Biot, France

b Eurecom Institute, Mobile Communications Dept, BP193,
F-06904 Sophia-Antipolis, France

ABSTRACT

It is often admitted that a static system with more inputs (sources) than outputs (sensors, or channels) cannot be
blindly identified, that is, identified only from the observation of its outputs, and without any a priori knowledge on
the source statistics but their independence. By resorting to High-Order Statistics, it turns out that static MIMO
systems with fewer outputs than inputs can be identified, as demonstrated in the present paper.

The principle, already described in a recent rather theoretical paper, had not yet been applied to a concrete blind
identification problem. Here, in order to demonstrate its feasiblity, the procedure is detailed in the case of a 2-sensor
3-source mixture; a numerical algorithm is devised, that blindly identifies a 3-input 2-output mixture. Computer
results show its behavior as a function of the data length when sources are QPSK-modulated signals, widely used in
digital communications.

Then another algorithm is proposed to extract the 3 sources from the 2 observations, once the mixture has been
identified. Contrary to the first algorithm, this one assumes that the sources have a known discrete distribution.
Computer experiments are run in the case of three BPSK sources in presence of Gaussian noise.

Keywords: High-Order Statistics (HOS), Source Separation, Downlink Communications, User Extraction, Cumu-
lant Tensor, Binary Quantics, Multiway array, Independent Component Analysis (ICA), Multiple Inputs Multiple
Outputs (MIMO) static linear systems

1. INTRODUCTION

The principles on which the blind identification algorithm is based are related to rather unknown and forbidding
canonical decompositions of homogeneous polynomials. Some of these results need to be introduced comprehensively.
But algebra has been kept to a minimum, and a tradeoff between compactness and readability of the notation has
been sought.

1.1. Notation

Throughout this paper, boldface letters, like u, will denote single way arrays, i.e. vectors. Its dimension is the range
of variation of its index. Capital letters, like G, will denote arrays with more than one way, i.e. matrices or many-way
arrays. The order of an array will refer to the number of its ways. The entries of an array of order d are accessed
via d indices, say i;..14, every index i, ranging from 1 to n,. The integer n, is one of the d dimensions of the array.
For instance, a matrix is a 2-way array (order 2), and has thus 2 dimensions. A product between two arrays can be
done in several manners. It is convenient to define two particular products.

Given two arrays, A = {A;j ¢} and B = {Bj/j: ¢} of orders d4 and dp respectively, having the same first
dimension, define the contraction product as:

71
(.A [ B)j..lj’“l’ = ZAij“lBij'.l’

i=1
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This product yields an array of order d4 + dp — 2. Next, the outer product yields an array of order d4 + dp and is
simply defined as:
(A ° B),-j”“,j;_.l, = Aij.,l Bi’j'.,l’

Eramples. (1) Rank-one matrices are of the form uov. (ii) The usual product between two matrices would be written
A B = AT e B. (iii) The scalar product between two vectors can be written uev. In the remaining, (T) will stand for
transposiion, (*) for complex conjugation, and (') for transposition and conjugation (i.e. Hermitian transposition).

1.2. Array decomposition

Now imagine data samples are stored in a d—way array, {G;;.,}. This array is decomposable’ if it is equal to the
outer product of d vectors: G =uovo---ow. A general array is a superposition of decomposable arrays, and a
common problem in data analysis is precisely to determine those constituting factors.!? In order to fix the ideas,
let’s concentrate on the fourth order case, and consider the array {Gijx¢}. The problem consists of finding a family
of vector quadruplets, (t(p),u(p), v(p), w(p)), such that G = Z:=1 t(p) o u(p) o v(p) o w(p). Clearly, three of the
four factors can be determined only up to a constant multiplicative factor. It is thus legitimate to assume that these
vectors have unit norm, without restricting generality, so that the model to identify is eventually:

G = 7(p) t(p) ou(p) o v(p) o w(p) (1

p=1

where v(p) are unknown scalars, 1 < p < w, and w is minimal. For the moment, we shall refer to this equation as
the Canonical Decomposition (CAND) of G. Note that this problem deflates to the standard factor analysis in the
case of 2-way arrays.3 In the latter case, it now well known that the minimal value of w allowing such a canonical
decomposition equals the rank of the matrix, and that the factors can be obtained by Singular Value Decomposition
(SVD). However, the uniqueness is obtained to the price of imposing the additional constraint of orthogonality
among each of the 2 families of w vectors. This constraint is not mandatory at higher orders,* as will be pointed out
subsequently.

1.3. Motivation

The motivation to go to higher order arrays is three-fold. First, as just said, the unicity is obtained with the help
of an arbitrary constraint of orthogonality at order 2. This constraint may not be in accordance with the actual
structure of the data. Second, data are often arranged in many-way arrays; the reduction to a 2-way array represents
a loss of information. Third, the number of factors that can be identified is limited to the rank of the data matrix,
itself bounded by the smallest dimension. Yet, there may very well be more factors than the smallest dimension.

Another field in data analysis where CAND is useful is learning theory. More precisely, if a probability density
function (pdf) needs to be computed from a finite set of data in dimension n, then the number of samples required
to reach a given relative precision grows exponentially with n. In practice, this makes it impossible to estimate pdf’s
in dimensions as small as 9 or 10.> One solution consists of splitting first the data into two subspaces of smaller
dimension, so that the pdf rewrites as well as possible as f(u,v) = g(u) A(v). In other words, the data are almost
statistically independent in the two subspaces.® The number of samples required in each of the two subspaces is thus
smaller by several orders of magnitude.

Beside data analysis, there are a number of fields where CAND is very useful, including Radar,” Acoustics, Com-
plexity,! or Digital communications, and particularly in military applications such as interception and classification
of radiating sources. In fact, the estimation of the sources must be carried out blindly in many military applications,
that is, with very few a priori knowledge on the expected sources. In the civil domain, mobile communications
need channel identification or equalization, which is carried out with the help of known sequences, emitted with this
purpose. Since a small part of the source signal is known, one often refers to semi-blind equalization® of the channel.
Constructive algorithms executing semi-blind equalization are based on principles of both blind and clear-sighted
equalization, hence the interest in blind approaches. In these problems, the statistics of the data are put in a d—way
array instead of the data themselves.

To be more explicit, assume the data are measured on n sensors, and that they satisfy the following n—channel
linear model:

y=Ax (2)



where the components of x (referred to as sources) are statistically independent, and where A is a n x w unknown full
rank matrix. The problem of estimating the sources from measurements of ¥, solely based on independence between
the z;’s is addressed in the literature under the terminology of Independent Component Analysis (ICA).%10 It may
or may not conduct a prior blind identification of the mixing matrix A. In the former instance, it can be seen as a
symmetric version of CAND. In the framework of ICA, the originality of the present work lies in the fact that the
number of sources, w, may be larger than the number of sensors, n. Let’s now be more explicit.

Random variables &; are statistically independent if all their cross-cumulants vanish.!! For instance, at order 4,
we should have that:

Cum{:z:,-, Tj, Tk, Il} = 7(1) (5(1,], k,@)

where 4 is the Kronecker function, equal to 1 if all its arguments are equal and null otherwise. Yet, cumulants satisfy
the multilinearity property,!! so that (2) implies that:

Gijke =Y ¥(p) Aip Ajp Arp Aty (3)
P

if G denotes the fourth order cumulant tensor of y. Now denoting by a(p) the pth column of A, it is easily seen that
(3) can be written as a symmetric canonical decomposition:

G =3 +(p)a(p) o a(p) o a(p) o a(p) (4)

p=1

This shows more explicitly that ICA is the symmetric version of CAND.

In the remaining, we shall be interested mainly in this symmetric decomposition, with d = 4, and with moderate
values of the dimension n. In particular, in downlink mobile communications, it is realistic to assume that the receiver
diversity will range between n = 2 and n = 4. In fact current equipment offers only n = 1, but 1t is reasonable to
assume that n = 2 will be available in the near future, by exploiting either the spatial, sampling, or polarization
diversities. In (4), n—dimensional vectors a(p) account for this diversity by the fact that they are not mutually
collinear.

1.4. State of the art

In real world applications, it happens that the observation is dynamic, that is, y(t) = H (t)*x(t), where the mixture is
characterized by a multichannel impulse response H (t) rather than by a constant matrix A. In such cases, additional
equations can be utilized, as demonstrated by Tong!? or Regalia,'® even if ICA is underlying in all multichannel
blind equalization problems.!* But the problem with fewer sensors than sources has been very little addressed and
only very recently by the Signal Processing community, even in the static case (see for instance DeLathauwer!S
Tong!? Cao'® Comon* et alterae).

In this paper, we concentrate only on the static model (2), also encountered in factor analysis. In the latter
field, the problem started to raise serious attention around 1970 (see in particular Caroll'” and Kruskall). With the
terminology of this field, w > n is translated into “more factors than subjects”.

Bergman'® has been probably the first to notice that the concept of rank is difficult to extend from matrices
to higher order arrays. Caroll!” provides the first canonical decomposition algorithm of a three-way array, later
referred to as Candecomp model. Kruskal! conducts several years later a detailed analysis of uniqueness, and relates
several definitions of rank. The algorithm Candelinc? was devised by Caroll and others in the eighties; it allows to
compute a canonical decomposition subject to a priori linear constraints. Leurgans!® derives sufficient identifiability
conditions for the 3-way array decomposition; as opposed to Kruskal, his proof is constructive and yields a numerical
algorithm running several matrix SVD’s. A solid account on decompositions of 3-way arrays can also be found in
DeLathauwer’s PhD thesis'®; an intersting tool defined therein is the HOSVD,20 generalizing the concept of SVD
to arrays of order 3, in a different manner compared to Caroll.

As shown in a recent work,® symmetric arrays of order d and dimension n can be associated bijectively
to homogeneous polynomials of degree d in n variables. Based on this remark, decomposing a symmetric array is
equivalent to decomposing a homogeneous polynomial into a sum of linear forms raised to the dth power (we shall
go back to this in section 2). The advantage, compared to Candecomp, is that the symmetry is not broken. As a



consequence, the problem can then be connected to early works in invariant theory?! and multilinear algebra.?? The
first results go back to the beginning of the century with the works of Sylvester (see section 3.1) and Wakeford.?
One can also mention, among others, the works of Rota?* on binary quantics, and those of Reznick on quantics of
even degree,® especially in the complex case.2® Reznick introduced the concept of width, which corresponds to the
rank in the case of matrices.

2. POLYNOMIALS AND TENSOR ARRAYS
2.1. Linear spaces

A cumulant array may be considered as a tensor, because cumulants (as well as moments) satisfy the multilinearity
property.!! For simplicity, tensors will be subsequently considered as mere arrays. The set of symmetric arrays of
order d and dimension n is a vector space of dimension:*

D(n;d)=<n+3—l) (5)

Now, every symmetric array G of order d and dimension n can be associated with a homogeneous polynomial p of
degree d in n variables as follows:

p(Ei, - Z Gy ka Thy *** Thg (6)

L ka=1
In the above expression, some terms appear several times. For instance at order 4 and in dimension 2:
_ 4 3 22 3 4
p(z1, T2, T3, £4) = G111127 + 4 G11122372 + 6 Gr1202725 + 4 G120071 25 + Gaooozs

and the total number of terms is n% = 16. For this reason, a compact notation needs to be introduced. Denote i a
vector of n integer indices, called multi-inder. If a is a vector of size n, then the following conventions are assumed:
n n n
at=JJai ¢ =T =D (7)
k=1 k=1 k=1
Next, the multinomial coefficient can be written as:
.o it
c(i) = 61 (8)
For instance, in the binary case, ¢(1111) = 1, ¢(1112) = 4, and ¢(1122) = 6; notice that in the binary case, the
multi-index 1 is necessary of the form (i,d — %) so that one can denote ¢(i) = ¢(i), with some abuse of notation. In
.. . ]
addition, ¢(i) = (¢) = ﬁ—(gd':m.
With this notation, any homogeneous polynomial of the form (6) can be written compactly without redundancy:
=Y Gicli)x (9)
li|=d
The linear space of homogeneous polynomials is of dimension D(n;d) as stated above, and one can choose as basis
the set of all monomials of degree d: B(n;d) = {x', |i| = d}.

Now the last ingredient we need is a scalar product. It turns out that the choice we are going to make is crucial
in the development of some properties. Let p and ¢ be two homogeneous polynomials of degree d in n variables,
x) = 3 j51=¢ Y1, p) c(i) X', and g(x) = 3554 v(i, 9) ¢(i) x'. Then define their scalar product as:

(pa)= D i) 1(i,p)" (i0) (10)
li|=d
This definition corresponds to the so-called apolarscalar product 24 divided by (d!). This choice may seem strange and
arbitrary, but it is justified by the property below. Let L(x) = a”x be a linear form. Then, L4(x) = ZL:I —qgc(i)alxd,
and:
(p,L%) = p(a”)" (11)
To see this, simply notice that from (10) (p, L¢) = ZL)' _2¢(3)7(,p)" a. This fundamental property (11) will very
useful when deriving Sylvester’s theorem in section 3.1.



2.2. Definitions of rank

We define the array rank! of a symmetric array (or just rank in short) as the minimal value of w allowing to obtain
the decomposition given in (4). Note that other terminologies such as tensor rank!® or polynomial width®® are also
encountered. This definition will be used in sections 3.2 and 3.4.

But other definitions have been proposed,!!®27 and are related to matrix ranks. In order to extract a matrix

slab from a many-way array (possibly not symmetric, but assumed square here for the sake of simplicity), one can
for instance define?” mode—k vectors, 1 < k < d. These vectors are obtained by letting index i vary, 1 < iy < n,
the other d — 1 indices being fixed. The mode—k rank is defined as the rank of the set of all possible mode—k vectors
(there are n¢~! of them). For symmetric arrays, mode—k ranks all coincide. For matrices, the mode—1 rank is the
column rank, and the mode—2 rank is the row rank. Mode—k rank and array rank are apparently not related to each
other. But there exist close links between the High-Order SVD introduced by DeLathauwer!®2” and mode—k ranks.

2.3. Courant-Fisher characterization

This section can be skipped in a first reading. In fact, other possible tracks for handling canonical decompositions
are examined, but will not be utilized in the rest of the paper.

One alternative approach that would allow to connect the problem to known results borrowed from linear algebra

is to consider a symmetric array of order d, G, as a linear operator, £,, mapping the set of arrays of order d — «
onto the set of arrays of order a, 0 < a < d. This mapping would be indeed defined as:

{La(B)}iy in = O Giyoigeia Bigpoia (12)

ia411d

which rewrites in compact form, with the notation introduced in section 1.1: Lo(B) =G ee---¢ B
d—atimes
In order to fix the ideas without restricting much the generality, consider the case d = 4. Then, there are 4 linear
operators that one can define:

Lo(By=GeBeBeBeB; L1(B)=GeBeBeB; L3(By=GeBeB; L3(B)=GeB

For instance, £, maps a matrix to a matrix. As a linear operator in finite dimension, £, can be represented by a
symmetric matrix, which can be diagonalized. Its eigenvalue decomposition can be written as £, = Zp ¥(p) A(p) o
A(p), where the A(p)’s can be called eigenmatrices. If uniqueness of this decomposition can be guaranteed, then
from (4) we should have that A(p) = a(p) o a(p), that is, the eigenmatrices should be of rank one. This resembles
the approaches advocated by Cardoso.2%:30

Now consider the following optimization criteria, when d = 4:

|2 [Gevevevev|

Q2 = |Lo(vovovov)
Q2 =||Li(vovov)—puv|? |[Gevevev—puv|?
= ||£1(vov) - pv ol

Q2 = ||£1(v) - v o vo vl

I

|Gevev—puvov|?

[|[Gev—puvovovl?
Q2 = ||G-pvovovov|?

where the Frobenius norm is assumed. By looking for stationary values of (i, v) subject to the constraint ||v||> = 1, it
is possible to derive characteristic equations. One can show that stationarity of {2,,, implies y = Gevevevev, Vm. On
the other hand, dQp = 0 or d24 = 0 lead to Gevevev = Av, but d2; = 0 = (3veveGeGevev—4 Gevevjev = Av,
d%=0=>(veGeGev—-2Gevev)ev=Av,anddQ3=0=>(GeeeG—-4uGevev)ev=JAv.

Of course similar results32 hold for d = 3. Inspired from these equations, one can build an iteration (a kind of
Rayleigh quotient3!) allowing to compute the vector v dominating the decomposition of G. Then, after subtracting
its contribution, one could repeat the iteration as long as there is still a residual of significant norm. As a result, one
would end up with the decomposition (4). Unfortunately, some algorithmic issues still remain to be addressed.



3. BLIND IDENTIFICATION ALGORITHM

The algorithm described in section 3.2.3 is based on an old result of multilinear algebra obtained by James Joseph
Sylvester. In order to make it understandable, it is necessary to go into some mathematics, that have nevertheless
been kept to a minumum.

3.1. Sylvester’s theorem
A binary quantic p(z,y) = Zf=0 ~i ¢(i) ' y?~* can be written as a sum of dth powers of r distinct linear forms:

T

p(z,9) =D _Aj a2+ 697,

i=1
if and only if (i) there exists a vector g of dimension r + 1, with components g,, such that

Yo Y1 I
: g=0. (13)
Yd—r - Yd-1 Yd

and (ii) the polynomial ¢(z, y) def > o 9e 2% y"~¢ admits r distinct roots.
Proof. Let’s first prove the forward assertion. Define vector g via the coefficients of the polynomial g(z,y) :

T

a(z,9) € [8; 2 - o} w).

j=1

For any monomial m(z,y) of degree d —r, we have (m ¢, p) = E;:I Aj (mg, (ojz+B; y)?), by hypothesis on p. Next,
from property (11), we have (mg,p) = Z;=1 Aj mg(aj, B;)*. Yet, this scalar product is null since there is (at least)
one factor in ¢ vanishing at = = o y = §;, for every j, 1 < j < r. This proves that (mgq,p) = 0 for any monomial
of degree d — r. In particular, it is true for the d — r + 1 monomials {m,(z,y) = z#y*""#, 0 < p < d—r}. And
this is precisely what the compact relation (13) is accounting for, since it can be seen that (m,q,p) = 3 ;_q 9¢ Vetu-
Lastly, the roots of ¢(x,y) are distinct because the linear forms (a; z + 3; y) are distinct. The reverse assertion,
proved along the same lines, is the basis of the numerical algorithm developed in the next section.

3.2. Algorithm with two sensors and 3 sources

3.2.1. Generic rank and uniqueness

Sylvester’s theorem is not only proving the existence of the r forms, but also gives a means to compute them. In
fact, given the set of coefficients {~;}, it is always possible to find the vector g from (13), and then deduce the forms
from the roots of the associated polynomial ¢(z,y). More precisely, if 7 is unknown, one starts with a d — 1 x 2
Hankel matrix, and one assumes r = 1. If this matrix is full column rank, one goes to » = 2 and test the rank of the
d — 2 x 3 Hankel matrix, and so forth. At some point, the number of columns exceeds the number of rows, and the

algorithm stops. In general, this is what happens, and the generic rank r is obtained precisely at this stage, when
2r > d.

For odd values of d, we have thus a generic rank of r = i‘g—l-, whereas for even values of d, r = % + 1, generically.
It is then clear that when d is even, there are at least two vectors satisfying (13), because the Hankel matrix is of
size % x (% 4 2). To be more concrete, take as example d = 4. The first Hankel matrix having more columns than

rows is of size 2 x 4, and obviously has generically 2 vectors in its null space.

As a conclusion, when d is odd, there is generically a unique vector g satisfying (13), but there are two of them
when d is even. In order to fix this indeterminacy, the idea proposed is to use another array, which should admit a
related decomposition, as explained in the next section.



3.2.2. Choice of two cumulant arrays

We have seen why it is necessary to resort to orders higher than 2. Order 3 statistics have the great advantage that
the uniqueness problem is much easier to fix, as emphasized earlier in this paper, leading to simpler constructive
algorithms. Unfortunately, they often yield ill-conditioned problems, in particular when sources are symmetrically
distributed about the origin. For these reasons, only 4th order statistics will be considered, even if the decomposition
problem is much harder.

As in (2), denote y the random variable representing the n—sensor observation. The data we are considering here
belong to the field of complex numbers. Thus there are 3 distinct 4th order cumulants that can be defined, namely:
Gijke = Cum{yi, 45, Uk, e}; Gijee = Cum{yi, y;, v, u; 5 Gijie = Cum{yi, yj, v, 97 } (14)

Again because of conditioning, the third cumulant array is not of appropriate use. But the two others can be fully
exploited. In fact, assume that model (2) is satisfied. Then we have:

G,‘jke = Z Km AimAijkmAlm; éijkl = Z Km AimAij;mAZmy

m=1 m=1

where Kk, = Cum{zm,,Tm,Tm,Zm} and &y = Cum{zm,zm,z),, 25} are unknown complex and real numbers,
respectively. These relations clearly show that the two 4-way arrays G and G admit canonical decompositions that
are related to each other, because the same matrix A enters both of them. The idea is to compute the decomposition
of G, up to some undeterminacies, and then to use the second 4-way array, G, to fix it.

3.2.3. Algorithm for n =2
Given a finite set of samples {y(¢), 0 <t < T},

1. Compute the two 4th order cumulant arrays as follows, {1 < i, j,k,¢< 2}:
1 X 1 I
Hij = ; uyi) A =5 ; vi(t)y; (?)

T T
pie = 7 e (uet) ke = 7 3 w0y (005 (00

Gijre = Mijke — Pijfke — MPikPje — Pitfik Gijke = flijre — fijitke — finfije — flieftjx

Note that in practice, because of symmetries, only a small part of these entries need to be computed ; these
details are omitted here for the sake of clarity.

2. Construct the 2 x 4 Hankel matrix as in (13), with v0 = G1111, 71 = G1112, 72 = G122, 73 = G1222, 74 = Ga222.
3. Compute two 4-dimensional vectors of its null space, v; and vs.

4. Associate the 4-way array G with a 4th degree real polynomial in 4 real variables. This polynomial lives
in a 35-dimensional linear space, and can thus be expressed onto the basis of the 35 canonical homogeneous
monomials of degree 4 in 4 variables. Denote § the corresponding 35-dimensional vector of coordinates.

(@3]

. For 8 € [0, 7) and ¢ € [0, 27) compute g(f,¢) = v, cosf + va sinf eI?
. Compute the 3 linear forms L; (x|6, ), L2(x|8, ), La(x|6, ), associated with g(8, ¢).
. Express |L.(x|8, ¢)|*, r = {1, 2,3} in the 35-dimensional linear space, by three vectors u,, us, us.

. Detect the values (6,,¢,) for which the vector § is closest to the linear space spanned by [u1, us, us]

© oo =N O

. Set L, = L-(8,,%,), and A = [L1, La, Ls], where the 3 forms L, are expressed by their 2 coordinates.

A matlab code of the complete algorithm is downloadable from www.i3s.unice.fr/~comon.



3.3. Computer results

Source samples have been generated according to a discrete distribution with support {1, 3, =1, —3}. Such sources
are encountered in digital communications, when the (very common) QPSK modulation is used. They have as fourth

order cumulants k = 1 and k = —1. The data length T was varied from 200 to 5000 samples, and the mixing matrix
_ | 0.81+0.39 0 0.35+0.35y
was taken tobe A= [ 0 0.5 - 0.86; 0.86 ]

A key issue is the choice of the performance measure. In the present case, it is not trivial to measure the
error between the matrix identified by the algorithm, say A, and the true mixing matrix A, since each column is
computed up to a multiplicative complex number, and up to a permutation among the columns. In other words, one
should measure the norm of ||4 — A - D||, for the best matrix D, formed of the product of a diagonal matrix and a
permutation (such matrices are sometimes called generalized permutations). In order to do this, the basic tool is the
computation of a distance T (u,v) between two vectors u and v, invariant up to a multiplicative complex number.
For this purpose, one defines

2
. —zv
Y(u,v) = Min lla—zv|]*
= al-{lvll
It can be seen that if u'v = [[u||-||v||-cosf e’¥, then the minimal distance Y (u,v) is reached for |||—|—:‘;-|-| - II—::IT e~

and takes the value 2(1 — cos 6). The gap between two matrices is then computed as the minimum distance over the
6 possible permutations:

-
Gap(A, A) = MFi.n ZT(col,-(A),col; (AP))
i=1
The range of variation of this gap is thus [0, 6] in the present problem where » = 3. Note that this is easy to
compute because of the very small dimension. For larger dimensions, one can avoid the exhaustive search for the
best permutation by assuming another gap measure, of more complicated (but compact) form.®

In figure 1 the average gap obtained over 15 independent experiments is plotted. The gap keeps small (compared
to its maximal achievable value of 6), even for a data length as small as T = 200. This behavior holds excellent
as long as the noise is negligible. If noise is present, the performance degrades rather fast, especially for short data
length T and non Gaussian noise. On the other hand, cumulant arrays are asymptotically insensitive to Gaussian
noise (for large T'), providing some robustness to the method.

0.3

0251 4
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500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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0.2
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Figure 1. Mean Gap obtained over 15 snapshots and data lengths ranging from 200 to 5000 samples.
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3.4. Extension to larger dimensions

For dimensions n > 2, Sylvester’s theorem cannot apply. Instead, one should resort to Lasker-Wakeford theorem,*
whose proof is not constructive. Consequently, efficient blind identification algorithms still remain to be devised.
But there are a number of results that are already known, especially concerning the rank (the width acoording to
Reznick?®). More precisely, for 2 < n < 8, it has been shown that the generic value of r is given by the following
table:*

r[n][2[3[4[5][6]7]8]

32|45 |8 [10]12]15
4136 |10] 15[ 2230 | 42

d

The number of free parameters that remain to be fixed in order to ensure uniqueness (in the sense that a finite
set of equivalent solutions can be obtained) is given by the dimension of the manifold of solutions:*

n[2][3]4[5][6]7]8]

310[2[0[514]0]0
drg 11355/ 6]0]6

One can check out, for instance, that for n = 2, we have indeed 1 free parameter to fix when decomposing 4-way
arrays, whereas there are a finite number of solutions in the case of 3-way arrays. This has already been pointed out
in section 3.2.1: a second 4-way cumulant array had been necessary in order to fix the parameter. It is interesting
to notice that the latter property often holds true for 3-way arrays; on the contrary for 4-way arrays, it occurs only
for n = 7 in the above table. Before to close this section, it is worth insisting that there is no simple rule or formula
that would yield the values of these tables: it is the result of several theorems of various origins.*

4. NON LINEAR INVERSION OF THE LINEAR CHANNEL

In the previous section, the problem of blind identification of the mixture A has been addressed, but the recovery of
the sources themselves was left open. In this section, it is assumed that the mixing matrix A is given, and the goal
is to estimate the input (source) vector, x, from the observation vector, y. Because A has more columns than rows
(under-determination), it cannot be linearly inverted.

4.1. Principle

In digital communications, the discrete-time processes always take values in a finite set. Therefore, their values can
be completely characterized by a set of polynomial equations. Take the example of d—PSK modulated sources, which
satisfy £% = 1. There are d solutions in the complex field, and hence a set of d allowed values. By adding to the n

observation equations (2) all the (Z_"‘_’f ) homogeneous monomials of degree d + 1, one gives oneself the opportunity to

use the r additional equations z¢ = 1, 1 < i < r. The system can be solved thanks to these additional equations. In
order to illustrate the idea, we shall now consider the easiest case.

This system becomes especially simple when enough linear equations can be extracted. This is in particular the
case if d = 2 and n = 2. In fact we have then r + 6 equations in » unknowns. The first 2 equations are given by
(2). The next 4 equations are given by y3, ¥3 y2, v1 y3, ¥3. These equations involve products of the form z?, z?z;,
or z;zjrk. By using the r remaining ones, namely x;‘? = 1, the latter products reduce simply to z;, z;, and z;z;xx,
respectively. In other words, the system becomes almost linear, beside the (5) terms of the form z;z;zx.

Now take our example of section 3, where » = 3. Then there is a single non linear term, z;zoz3. If this term is
considered as a plain unknown, independently of the 3 others, we end up with a linear system of 6 equations in 4
unknowns:

z gi’
y A 0 Ts yi e
= . where 2z =
< z ) ( B ) z3 ’ v Y
I1T223 y%

Since the 4 x 4 matrix B is a known function of A, it is given as soon as A is known. The above system can thus be
solved for the 4 unknowns in the Leat Squares (LS) sense. In the approach proposed here, the LS solution obtained
for z1zoz3 is simply discarded.
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Figure 2. Typical inversion results obtained with a SNR of 12dB.

4.2. Computer results

Data have been generated according to the following model:

1 2 01 -1
y..Ax+;w, where A-[O.l 9 1 ]
Parameter p allows to control the noise power. The signal to Noise Ratio (SNR) is defined here as 20 log;q p. It is
thus a global value for the 3 sources, that implicitly depends on the matrix A, of course. Figure 2 shows a typical
example, obtained for SNR=12dB. Note that the Signal to Interference Ratio (SIR) is of about 6dB for the first two
sources, but of -6dB for the third one, measured on the space spanned by the exact directional vector. This yields

an average SIR of about 3dB, coming in addition to the noise corruption.

As the SNR varies from 10 to 50dB, two performance measures have been calculated. First, one has computed a
mean standard deviation of the normalized source estimation error:

3 . 1/2
_ Z . Ti T
Oerror = ( varlance[——g (-’Bz) p (:6,)] )

i=1

where z; denotes the true source value of source i and ; its estimate. Figure 3 (left) reports the performances
obtained. Second, the Bit Error Rate (BER) has been estimated over 10,000 samples for each value of the SNR; the
errors made for each of the 3 sources have been cumulated, so that the accuracy is 1/30,000 ~ 3.10~5. The BER
stays below 2 percent until 10dB (see figure 3, right).

5. CONCLUSION

One of the objectives of this paper was to demonstrate that it was possible to blindly identify a static system with
more inputs than outputs, and to estimate its inputs from the outputs. The principles were illustrated in the case
of n = 2 outputs and » = 3 inputs. The extension to larger numbers of inputs and outputs turns out to be much
more complicated, and is still being studied. With this goal, other tracks can also be followed, as briefly explained
in section 2.3. One of them, in the case of even orders (e.g. d = 4), is to consider the d—way array as an operator
mapping the space of d/2—way arrays onto itself; another one is to attempt to compute the stationary values of Qp,.
Despite their potential usefulness, numerical algorithms have been to date only little studied.
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