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ABSTRACT
A polyhedral object in 3-dimensional space is often well represented by a set of points and line segments that act as
its features. By a nice viewpoint of an object we mean a projective view in which all (or most) of the features of the
object, relevant for some task, are clearly visible. Such a view is often called a non-degenerate view or projection. In
this paper we are concerned with computing non-degenerate orthogonal and perspective projections of sets of points
and line segments (objects) in 3-dimensional space. We outline the areas in which such problems arize, discuss recent
research on the computational complexity of these problems, illustrate the fundamental ideas used in the design of
algorithms for computing non-degenerate projections, and provide pointers to the literature where the results can be
found.
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tional geometry.

1. INTRODUCTION
In the scientific world we are frequently concerned with visualizing, describing and analyzing data consisting of
three-dimensional (3-D) sets of points or line segments.' These points and/or line segments may be the data itself
or they may have been extracted as fiducial features from a solid object such as a polyhedron. In this latter case
the points may be some or all of the vertices of the polyhedron, and the line segments may be some or all of the
edges of the polyhedron. However, we often have at our disposal only a 2-D medium, such as a computer-graphics
screen or camera retina, on which to display a necessarily incomplete representation or picture of the object or data
we are interested in. Therefore it is desirable to obtain 2-D representations of our data that make it easy for us to
discover the structure in the real data in 3-D. This family of problems, the topic of this paper, falls in the areas of
data visualization, knot theory, computer vision, computer graphics, graph drawing, and removal of degeneracies in
computational geometry. These fields in turn belong to the much broader domain of scientific visualization,2'3 the
discipline concerned with helping us to better visualize information, objects and processes in their fullest generality.

One of the archetypal problems in graph-drawing4" consists of asking, for a given graph, a nice drawing of it.
A graph is not a rigid object in 3-D space but a more abstract topological structure which permits the shortening,
lengthening and bending of its edges to achieve the desired goal. By contrast, in this paper we are more concerned
with rigid metrical objects in 3-D space and we would like to obtain nice projections of these objects on some plane
that will afford them. A class of problems more closely related to those considered here is concerned with obtaining
nice projections of geometric graphs in space.5 Such objects are rigid objects composed of points and line segments.

There are many ways to project an object onto a plane and it is therefore useful to distinguish between two
fundamental and related methods: perspective projections and orthogonal (also orthographic or parallel) projections.
A perspective projection represents a description of what the data look like from a particular point (location) in
space. Orthogonal projections may be considered as perspective projections in the limit as the view point approaches
a location infinitely far away from the data being viewed. Intuitively, we may think of our data as a set of points that
block rays of light, embedded in 3-D space above the horizontal xy-plane, and the orthogonal projection of the data
on the xy-plane as the shadow cast by the points when a light source shines from a point infinitely high along the
positive z-axis. Obtaining nice orthogonal projections of the data then reduces to the problem of finding a suitable
3-D rotation for the points such that their shadow on the xy-plane contains the desired properties.
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Painters in the fine arts are probably the earliest researchers of the methods for projecting the 3-D world we see
onto the 2-D canvas. In 1435 Leone Battista Alberti22 was the first to develop a logically coherent and pictorially
adequate algorithm for obtaining perspective projections.21

There exists a variety of specific geometrical characteristics that can more accurately describe the vague notion
of the niceness of a projection of an object. Some of these criteria are more desirable than others depending on the
application in mind. Forexample, if the object is a set of points, one fundamental definition of nice is that all the
points of the 3-D set should be visible in the projection. In other words, no point should be hidden behind another.
In keeping with knot-theory notation,20 we call such projections regular. Three natural computational problems
immediately arise concerning regular (or any other nice) projections. The first is the decision problem: given a set S
of n points in space and a plane H, determine if the projection of S onto H is regular. The second is the compu1aion
problem: given a set S of n points in space, find a plane on which the projection of S is regular if one exists. Finally,
the third problem is the opiimizaüon problem: given a set S of n points in space, determine a projection that allows
the greatest amount of perturbation of the viewpoint without ever causing a degeneracy. In other words, here we
ask for the most robust (or stable) projection among all possible regular projections, given that they exist.

2. KNOT THEORY
2.1. Introduction
A knot is a non self-intersecting polygon in 3-D space.'9'20'39'4° A knoi-diagram is a mapping of the knot from
3-D onto the plane. :In order to manipulate the knot diagram from one configuration to another without changing
the underlying knot, researchers need a diagram with certain key properties. The regular projection of a knot is a
knot-diagram that contains the desired properties.

2.2. Regular Projections
The earliest work on non-degenerate orthogonal projections appears to be in the area of knot theory. Let S be a
set of n disjoint line segments in E3 specified by the cartesian coordinates of their end-points (vertices of 5) and
let H be a plane. Let SH be the orthogonal projection of S onto H. An orthogonal projection of S is said to be
regular if no three points of S project to the same point on H and no vertex of S projects to the same point on H
as any other point of 5•20 This definition implies that for disjoint line segments (1) no point of SH corresponds
to more than one vertex of 5, (2) no point of SH corresponds to a vertex of S and an interior point of an edgeof
5, and (3) no point of SH corresponds to more than two interior points of edges of S. Therefore the only crossing
points (intersections) allowed in a regular projection are those points that belong to the interiors of precisely two
edges of S. This condition is crucial for the successful visualization and manipulation of knots.2° Knots, being non
self-intersecting polygons in 3-D, are special cases of sets of line segments where not all the segments are disjoint.
Note that a vertex where two edges are joined together in the case when the line segments form a 3-D polygon counts
as (not two) but one vertex. In a regular projection of a knot a crossing point comes from precisely two edges of the
polygon in 3-D, and the viewing direction then unambiguously determines which edge is in front of the other. This
in turn allows the Reidemeister moves to be applied to change one knot diagram into another.

Regular projections of 3-D polygons were first studied by the knot theorist K. Reidemeister37 in 1932 who showed
that all 3-D polygons (knots) admit a regular projection and in fact almost all projections of polygons are regular.
Reidemeister however was not concerned with computing regular projections. The computational aspects of regular
projections of knots were first investigated by Bose et al.,5 under the real RAM model of computation. See also
the thesis by Francisco Gomez.'7 Given a polygonal object (geometric graph, wire-frame or skeleton) in three
dimensional euclidean space (such as a simple polygon, knot, skeleton of a Voronoi diagram or solid model mesh),
they consider the problem of computing several "nice" orthogonal projections of the object. One such projection, well
known in the graph-drawing literature, is a projection with few crossings. They consider the most general polygonal
object, i.e., a set of disjoint line segments. They show that given a set of n line segments in space, deciding whether it
admits a crossing-free projection can be done in O(n2 log n + lc) time and 0(n2) space, where k is the number of such
intersections and k = 0(n4). This implies for example that, given a knot, one can determine if there exists a plane
on which its projection is a simple polygon, within the same complexity. Furthermore, if such a projection does not
exist, a minimum-crossing projection can be found in 0(n4) time and 0(n2) space. They showed (independently of
Reidemeister) that a set of line segments in space (which includes polygonal objects as special cases) always admits
a regular projection, and that such a projection can be obtained in 0(n3) time. A description of the set of all
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directions which yield regular projections can be computed in O(n3 log n + k log n) time, where k is the number of
intersections of a set of quadratic arcs on the direction sphere and k = 0(n6). Finally, when the objects are polygons
and trees in space, they consider monotonic projections i.e., projections such that every path from the root of the
tree to every leaf is monotonic in some common direction on the projection plane. For example, given a polygonal
chain P, they can determine in 0(n) time if P is monotonic on the projection plane, and in O(n log n) time they can
find all the viewing directions with respect to which P is monotonic. In addition, in 0(n2) time, they can determine
all directions for which a given tree or a given simple polygon is monotonic.

3. COMPUTER VISION
3.1. Introduction
In the computer vision field there is both a theoretical23 interest in nondegenerate projections and a pratical one.6
The theoretical work resembles the work described in the previous section on knot theory in that it is assumed that
the object consists of idealized points and line segments or polygons and polyhedra. A tool used for computing
viewpoints from which the maximum number of faces of a solid polyhedron is visible, is the aspeci graph.'4 Closer
to the spirit of this paper, the Wirtinger projections of interest in computer vision are very closely related to the
regular projections of knot theory.

3.2. Wirtinger Projections
That certain types of non-degenerate orthogonal projections of 3-D polygons always exist for some directions of
projection was re-discovered by Bhattacharya and Rosenfeld19 for a restricted class of regular projections known as
Wirtinger projections. Recall that regular projections allow two consecutive non-collinear edges of a 3-D polygon
to project to two collinear consecutive edges on H. Therefore some shape features of the polygon may be lost
in regular projections. In knot theory this is not a problem but for visualization applications this may not be
desirable. Those regular projections in which it is also required that no two consecutive edges of the 3-D polygon
have collinear projections, are known as Wirtinger projections. Bhattacharya and Rosenfeld'9 did not address the
algorithmic complexity of actually finding Wirtinger projections. Bose et al.,5 study the complexity of computing a
single Wirtinger projection as well as constructing a description of all such projections for the more general input
consisting of disjoint line segments. These results include therefore results for 3-D chains, polygons, trees and
geometric graphs in general. The description of all projections allows one to obtain Wirtinger projections that
optimize additional properties. For example, one may be interested in obtaining the most tolerant projection in the
sense that it maximizes the deviation of the view-point required to violate the Wirtinger property.

3.3. Object Reconstruction from Projections
A related problem in computer vision is that of reconstructing a 3-D object from a set of given projections. That
the given projections be regular is helpful in solving this problem. Some results along these lines are available for
polygons'9 and sets of points.'6

3.4. Finite Resolution Models of View Degeneracy
View degeneracy is a central concern in robotics where a robot must navigate and recognize objects based on views
of the scene at hand.24'25 In the idealized world assumed in the previous sections, degenerate views are not much
of a problem if a viewpoint is chosen at random, since almost all projections are not degenerate. On the other hand,
real world digital cameras have a finite resolution and therefore view degeneracy can no longer be ignored.8 Several
researchers in computer vision observed experimentally that degenerate views occurred with surprising regularity.2629
Several strategies have also been investigated for controlling the camera motion in order to move out of a degenerate
view.30 Dickinson, Wilkes and Tsotsos6 provide some definitions of degeneracies relevant to vision systems with
finite resolution, develop a computational model for estimating the probability that a random view is degenerate,
and provide some experimental results with a class of objects that indicate that a typical probability of a degenerate
view is 0.2 and can be a high as 0.5, a surprisingly high value.
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4. COMPUTER GRAPHICS
In computer graphics one is interested in vizualising objects well, and therefore nice views31'32 and non-degenerate
views9 are major concerns. In vector graphics the objects are usually polygons in space and so the work there also
resembles the work in knot theory and theoretical computer vision. For example, Kamada and Kawai9 proposed a
method to obtain nice projections by making sure that in the projection, parallel line segments on a plane in 3-D
project as far away from each other as possible. Intuitively, the viewer should be as orthogonal as possible to every
face of the 3-D object. Of course this is not possible and therefore they suggest minimizing (over all faces) the
maximum angle deviation between a normal to the face and the line of sight from the viewer. They then propose an
algorithm to solve this problem in O(n6 log n) time, where n is the number of edges in the polyhedral object in 3-D.
Gomez et al.,7 reduce this complexity to 0(n4) time. Furthermore, they show that if one is restricted to viewing
an object from only a hemisphere, as is the case with a building on top of flat ground, then a further reduction in
complexity is possible to 0(n2) time.

5. GRAPH DRAWING
In many situations, especially objects which are graphs that contain many more edges than do skeletons of polyhedral
objects, another requirement for effective visualization is simplicity. One frequently used measure of simplicity is the
number of crossings of edges in the projection. It is desirable to obtain the projection that minimizes the number of
crossings. If the minimum number of crossings is zero we call such projections crossing-free. In some applications
we may have a 3-D directed tree as an object of interest. Such a tree may represent a system of veins in the human
brain for example, where the direction of an edge represents the direction of blood flow in the corresponding vein
segment. Here it is of interest to determine if there exists a projection such that all the directions of the edges of the
tree are monotonically increasing in a specified direction on the projection plane. In general we call such projections
monotonic projections. More specifically, a projection is monotonic if the projected image on the projection plane
is monotonic. A planar polygonal chain is monotonic if there exists a direction such that every line orthogonal to
this direction, that intersects the chain, yields one connected component as the intersection. A planar polygon is
monotonic if it can be partitioned into two chains each of which is monotonic with respect to the same direction. A
tree is monotonic if it contains a root and a direction such that all shortest paths from the root to the leaves are
monotonic with respect to that direction. In Ref.5 projections for objects which are sets of disjoint line segments,
simple polygons, polygonal chains and trees, are investigated. Furthermore polynomial time algorithms are given for
all the problems.

Of course the objects considered in Ref.5 are geometric graphs and not general graphs. For general graphs the
notions of minimum crossing drawings and monotonic drawings are classic visualization problems that have been well
studied in the context of graph drawing.4' The general question of given a graph, can one find an embedding in the
plane that minimizes the number of crossing edges, is NP-complete.42 In fact this problem is also NP-complete for
a variety of special cases.43 A lot of work has been done for drawing graphs in a monotonic way in the plane. These
drawings are known in the graph-drawing literature as upward planar drawings. The general problem of determining
for a given directed graph, whether it can be drawn in the plane such that every edge is monotonically increasing
in the vertical direction and no two edges cross is also NP-complete, as is the problem of deciding if an undirected
graph can be drawn in the plane such that every edge is a horizontal or vertical segment and no two edges cross.44

Traditionally graph drawing was done in the plane and hence the importance of minimizing the numbei of
crossings. More recently however graph drawing research has explored drawing graphs in 3-D.45 In 3-D other
criteria for goad drawings become important and particularly drawings that have good views in many projections.
Eades, Houle and Webber" proposed three models of good viewpoints but the complexity of computing them is too
high to be practical in many situations. This prompted Houle and Webber'2 to propose new criteria for best views
and approximate but more efficient algorithms for computing them. See also the thesis of Richard Webber.'3

6. REMOVING DEGENERACIES IN COMPUTATIONAL GEOMETRY
6.1. Introduction
Algorithms in computational geometry are usually designed for the real RAM (random access machine) assuming
that the input is in general position. More specifically, the general position assumption implies that the input to
an algorithm for solving a specific problem is free of certain degeneracies. Yap36 has distinguished between intrinsic
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or problem-induced and extrinsic or algorithm-induced degeneracies. For example, in computing the convex hull
of a set of points in the plane, where "left" turns and "right" turns are fundamental primitives, three collinear
points constitute a problem-induced degeneracy. On the other hand, for certain vertical line-sweep algorithms two
points with the same x-coordinate constitute an algorithm-induced degeneracy. Computational geometers make these
assumptions because doing so makes it not only much easier to design algorithms but often yields algorithms with
reduced worst-case complexities. On the other hand, to the implementers of geometric algorithms these assumptions
are frustrating. Programmers would like the algorithms to work for any input that they may encounter in practice,
regardless of the degeneracies that such an input may contain.

Due to the practical importance of having algorithms work correctly for degenerate input, there has recently been
a flurry of activity on this problem in the computational geometry literature. In one method to remove degeneracies
for solving a problem, the approach is to compute some approximation to the exact solution of the problem when a
degenerate input is encountered. The other well known class of methods for handling degeneracies is via perturbaiion.
Here the input is perturbed in some way by an infinitesimal amount so that the degeneracies are no longer present
in the perturbed input. For a review of perturbation schemes, see Emiris and Canny,34 Yap,36 and Emiris, Canny
and Seidel.35

The above methods give the implementer two rather unsatisfactory choices: find an approximaie solution to the
original problem given, or find an exact solution to an approximaiion of the original problem. Sometimes it may
be possible to convert the approximate solution obtained from perturbation methods to the exact solution by using
some kind of post-processing step but this step may be complicated.33

One may wonder if one can have one's cake and eat it too. Can we find the exaci solution for the original problem
with simple algorithms that handle degeneracies? The answer depends on the type of cake we want to eat. Gomez
et. al.,'77 address an issue concerning the assumption of non-degeneracies which has received very little attention in
the computational geometry literature. Often a typical computational geometry paper will make a non-degeneracy
assumption that can in fact be removed (wiihoui perturbing the input) by a global rigid transformation of the input
(such as a rotation, for example). Once the solution is obtained on the transformed non-degenerate input, the solution
can be transformed back trivially (by an inverse rotation) to yield the solution to the original problem. In these
situations, by applying suitable pre- and posi- processing steps, they obtain the exact solution to the original probl em
using an algorithm that assumes a non-degenerate input, even when that input is in fact degenerate. This approach
not only handles algorithm-induced degeneracies via orthogonal projections but some problem-induced degeneracies
as well with the aid of perspective projections.

Ref.7 considers several non-degeneracy assumptions that are typically made in the literature, proposes efficient
algorithms for performing the pre- and post-processing steps (suitable rotations) that remove these degeneracies,
analyzes their complexity in the real RAM model of computation and, for some of these problems, gives lower
bounds on their worst-case complexity. The assumptions considered in Ref.7 include:

1. no two points in the plane have the same x and y-coordinates,

2. no two points in space lie on a vertical line (regular orthogonal projection),

3. no two points in space have the same x, y and z-coordinates,

4. no three points in space lie an a vertical plane,

5. no two line segments lie on a vertical plane.

Incorporating their algorithms with those in the literature that make these non-degeneracy assumptions allows
those algorithms to work even when the degeneracies are present, albeit at the cost of the increased complexity of
computing the required rotations.

6.2. No Two Planar Points on a Vertical Line
In this subsection we illustrate the fundamental techniques used in the literature to remove algorithm-induced
degeneracies. We use as a generic example a very simple version of the problem for a set of points in the plane.
These techniques form the basis for solving more complicated problems in higher dimensions. We illustrate all three
versions of the problem: decision, computation and optimization.
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Many papers in computational geometry assume that no two points of a given planar set S have the same x-
coordinate. This is especially true when a line-sweep technique is used to solve the problem. Thus this is a typical
algorithm-induced non-degeneracy assumption. Recall that a projection of S on a line L is said to be regular if each
point in S projects to a distinct point on L, i.e., there are no vertical line degeneracies. In other words the projection
contains n distinct points. Without loss of generality, when a line L is given, we will assume L to be the x-axis.
If this is not the case, then in linear time, we may always rotate the configuration of points and line together so
that L coincides with the x-axis. Therefore we are concerned here with the simplest version of computing a regular
projection of an object.

6.2.1. The Decision Problem
The decision problem is: given a set S, does it contain a degeneracy or does it give a regular projection on the x-axis.
This question can be answered in 0(n2) time by simply checking every pair of points to determine if they have the
same x-coordinate or not. However, a much faster algorithm suffices since we simply need to check for duplicates
in the x-coordinate values of the point set S. This can be done in O(n log n) time by sorting these values. The
projection is regular if and only if there are no duplicates in this sorted list.

Furthermore, by a reduction from the element-uniqueness problem we can derive a lower bound on the complexity
of this problem. The element-uniqueness problem is to determine, given an input set of real numbers, if any two of
them are equal. This decision problem is known to be 2(n log n). A lower bound of Q(n log n) can be established for
the regular projection decision problem: Given a set of n real numbers A ={ai , . . . , a}, the input S to the regular
projection problem will be the set of planar points {(a, i) I 1 � i � n}. The elements of A are unique if and only if
S has a regular projection on the x-axis. Therefore we may conclude that given a set S of n distinct points in the
plane and a line L, whether S admits a regular projection onto L can be determined in ®(n log n) time.

6.2.2. The Computation Problem
Let us now turn to the computation problem: given a set S of n distinct points in the plane, find a rotation of S
that removes the degeneracies, or equivalently, a line L such that S yields a regular projection on L. That a regular
projection always exists follows from the fact that the only forbidden directions of projections are those determined
by the lines through pairs of points of S. The forbidden directions are represented as follows: Let the circle C2,
representing the set of directions, be the unit circle in the plane, centered at the origin. For every pair of points in
5, translate the line through them so that it intersects the origin. Intersect each such line with C2 to yield a pair of
forbidden points on C2. We now have n(n —1)/2 not necessarily distinct forbidden points on C2. Although there
are 0(n2) such forbidden directions, they have measure zero on the circle of directions C2. Hence there is indeed
no shortage of directions that allow regular projections. We may determine a direction for a regular projection by
finding a point in the interior of any arc of C2 that is bounded by two distinct adjacent forbidden points. Such a
point on C2 may be found easily in O(n2 log n) time by using the brute-force approach of sorting the 0(n2) forbidden
points.

Observe that using an O(n log n) time slope selection algorithm to find the k-th and (Ic + 1)-st slopes, which define
an allowable interval of directions for obtaining a regular projection, will not necessarily lead to an improvement in
run-time. This is because the slopes are not necessarily unique and hence the k-th and (k + 1)-st slopes may have
the same value. In fact, there may be several slopes, as many as (n2), with the same value.

By combining the decision problem discussed above with a simple bounding technique we obtain an efficient
algorithm for solving the computation problem. Given 5, and our goal to determine a regular projection, first check
if the vertical projection of S on the x-axis is regular. This takes O(n log n) time, as described earlier. If it is, we
have the desired direction and we are done. Hence assume that the projection of S onto the x-axis is noi regular.
This implies that the maximum slope, denoted by M1 , is equal to infinity. As mentioned above, looking for the
next-largest non-duplicate slope, i.e, the maximum slope with the consiraint that it not be infinite, could be costly.
Let us denote this slope by M2. The key realization for obtaining an efficient algorithm is that we do not need this
constrained maximum slope. All we need is the value M of some slope such that M2 < M < M1, which may be
found as follows.

Let Lx and /.y denote, respectively, the difference in x and y coordinates of two distinct points in S. The slope

of the line going through this pair of points in S is given by . Let maxs{Ly} denote the maximum value that
can take over all pairs of points in 5, i.e., the width of S in the y-direction. Similarly, let mins{Lx} denote the
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minimum value that zx can take over all pairs of points in S, i.e., the smallest gap in the x-coordinate values of the
points in S. Of course, since the projection on the x-axis is not regular, we have that mins{ix} = 0 (leading to
an infinite maximum slope) . To find a non-infinite upper bound on the second highest slope, first do the following:
Sort the points in S by x-coordinate in order to remove all duplicates from the projected set of points on the x-axis.
Let S C S denote this reduced set of points with the property that no pair has the same x-coordinate. If there is
just one point in S , then we have the case that all points are collinear on a line parallel to the y-axis. In such a
situation, any line except the x-axis will give us a regular projection. In other words, the desired slope M can be
any non-infinite value.

The desired direction (slope) for rotating S is given by any finite value greater than x5y} Note that
. m1ns.{zx}

this bound is tight in the sense that the pair of points that determine min5. Lx could be the same pair that yields
maxsZy, and hence S may contain a pair of points that realize the slope M, i.e., M2 < M. Since minss {Lx} > 0
we have that M < M1 = oo. Computing maxs{zy} takes linear time and computing mins* Lx takes linear time
once S has been found. We can therefore conlcude that given a set S of n distinct points in the plane, finding a
regular projection onto the x-axis takes O(n log n) time.

6.2.3. The Optimization Problem

We consider now the question of not merely removing the degeneracies (finding a regular projection) , but removing
them in the best way possible, i.e., we want to find the projection that is most robust or tolerant (siable in the
computer vision terminology) in a way that will be made precise below. One natural definition of tolerance is the
idea, which comes from computer graphics, that the projected points are the result of viewing the points from
some directional angle, perhaps by a viewer or a camera. Once the regular projection has been obtained it is
desirable that the projection remain regular during subsequent perturbations of the position of the camera. In
fact we would like to find, among all the regular projections, the one that has maximum tolerance in this sense,
namely, the projection that allows the greatest angular deviation of the viewpoint without violating the regularity
of the projection, i.e., without creating degeneracies. We call this the regular projection with maximum projective
tolerance. The previous discussion implies that the solution to this problem is determined by the mid-point of the
largest gap among consecutive forbidden points on C2 , the circle of directions. The largest gap can be found by
sorting the 0(n2) forbidden points.

A more general weighted version of this problem was first solved by Ramos in his thesis38 on the tolerance of
geometric structures. He uses much more complicated techniques involving lower envelopes of trigonometric functions,
but obtains the same time complexity as the above algorithm. It is interesting to note that such a simple algorithm,
as the one described above, exists for the unweighted case. In conclusion, given a set S of n distinct points in the
plane, a regular projection with the maximum projective tolerance can be computed in O(n2 log n) time and 0(n2)
space.

It is worth noting that if the model of computation allows the use of the floor function as a primitive operation
then there is a surprising and elegant linear time algorithm based on the "pigeon-hole" principle for computing the
largest gap of a set of numbers on the real line. This algorithm can be extended to work on the circle C2 , giving us
an 0(n2) time algorithm for computing a projection with the maximum projective tolerance.

6.3. Perspective Projections and Intrinsic Degeneracies
6.3.1. Introduction
Intrinsic degeneracies cannot be removed by rotations of the input. If a set of points S in 3-D contains three collinear
points then so does every orthogonal projection of S. This is where perspective projections come to the rescue. In this
subsection we discuss the problem of removing intrinsic degeneracies for point sets by using perspeciive projections
as the global transformation. Not all intrinsic degeneracies can be removed with perspective projections. Intrinsic
degeneracies that can be removed via perspective projections are called quasi-intrinsic degeneracies.'8"5"° For
example, given a set of points on the xy-plane which has four or more cocircular points, we are interested in finding
a center of projection and a plane such that the projection of that set of points does not contain four cocircular
points. However, we are not interested in projecting on planes which are far away from the xy-plane since this could
radically change the positions of the points. We must therefore look for planes that are close to the xy-plane.
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Gomez et al.,'5 consider computing non-degenerate perspective projections of sets of points and line segments in
3-dimensional space. For sets of points they give algorithms for computing perspective projections such that (1) all
points have distinct x-coordinates, (2) all points have both distinct x- and y-coordinates, (3) no three points in the
projection are collinear, and (4) no four points in the projection are cocircular. For sets of line segments they present
an algorithm for computing a perspective projection with no two segments parallel. All their algorithms have time
and space complexities bounded by low degree polynomials.

6.3.2. No Two Projected Points have the Same x-Coordinate
Motivated in part by the problem of visualizing a point set in 3-D projected onto a plane, Gomez et al.,7 solve
the problem of finding the orthogonal projection of S that has the property that the projected points have distinct
x, y and z coordinates. We now illustrate the perspec1ive version of that problem for the special case of distinct
x-coordinates only. We assume throughout that the plane of projection is the xy-plane.

Let S = {Pi . . , Pr} be a set of n distinct points in space and c be a center of projection. We denote by
s* = {*, . . . , p;; } the perspective projection of S from c. When necessary, we will underline the dependency of
s* on c by writing S (c) or p(c). If there are two points in S that determine a line parallel to the y-axis, then
the perspective projection of S will contain points with the same x-coordinate. We can test for this in O(n log n)
time and linear space by projecting S orthogonally onto the xz-plane and checking the resulting projected points for
duplicates. Using a lexicographic sort (along the x and z coordinates) of the projected points, followed by a scan of
the sorted list, we can determine whether there exist any such duplicates in O(n log n) time.

Given a set of n distinct points such that no two of them determine a line parallel to the y-axis, deciding whether
a given projection on the xy-plane has distinct x-coordinates can be done in ®(n log n) time and ®(n) space. It is
sufficient to check for duplicate x-coordinates by sorting lexicographically the projected points on the xy-plane.

Before turning to the computation problem we dispense with the existence problem, namely: does a perspective
projection of S with distinct x-coordinates always exist? A point is said to be a forbidden poin1 if it produces a
projection with non-distinct x-coordinates when projecting from it. A plane is called a forbidden plane if it contains
a pair of points of S and intersects the xy-plane at a line parallel to the y-axis. Furthermore, every pair of points
in S may yield a forbidden plane and there are no others. Since all forbidden points are contained in 0(n2) planes,
and these planes have measure zero in space, we conclude that there always exists a perspective projection whose
x-coordinates are all distinct.

Let us now consider the computation problem: given a set S of n points in 3-ID, find a center whose projection
has distinct x-coordinates. In particular, in the following we show that given a set of n distinct points such that
no two of them determine a line parallel to the y-axis, a projection with distinct x-coordinates can be computed in
O(n log n) time and linear space.

If necessary, we first change the coordinate system so that S lies in the first octant (that is, all points have positive
coordinates). Next we project S orthogonally onto the xy-plane, and taking that projection as a planar set, compute
its perspective projection from the origin onto some line. If such a projection is not regular, then we will find a
new center on the negative part of the x-axis which does produce a regular projection, and change the coordinate
system again by translating S in the +x direction so that this new center coincides with the origin. An O(n log n)
time algorithm can be used to compute this new center.10 We note that after these operations the z-axis cannot
contain centers of projection that yield non-regular projections on the xy-plane because there is no plane containing
the z-axis and more than one point of S.

The following algorithm finds a valid projection for S with a projection center on the positive z-axis. Actually,
the algorithm not only computes a valid center, but also obtains an open line segment of valid centers.

Let z0 be a positive number such that z0 > rnax{z(pj) I
i = 1, • . . , n}, where Z(pj) is the z-coordinate of p,

and c(zo) = (0, 0, zo) is a point on the z-axis. Let us consider S*(z) the perspective projection of S from c(z) =
( 0, 0, z), z zo onto the xy-plane. If 5* (zo) turns out to have all its x-coordinates distinct, then we are done.
Therefore assume this is not the case. Then we know that in S (z0) there are at least two points with the same x-
coordinate. When varying the parameter z, z ZO in a continuous way, the points of 8* (z) also move in a continuous
way. Let c(zi) = (0, 0, zi) be the nearest forbidden point to c(zo). In the set S (zi), there must exist two points,
p (z1), p.1 (z1), whose x-coordinates when sorted are equal. Since the order of the projected points along the x-axis
changes only at a forbidden point on the z-axis when c(z) varies, it follows that points p.(z1) and p1 (zi) were
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already consecutive at c(zO). Therefore, it suffices to consider only those planes passing through two consecutive
points in the ordering by x-coordinate at zo . For each one of those planes, we compute the intersection with the
z-axis and select the nearest point c(zi) to c(zo). Any point of the open line segment determined by c(zi) and c(zo)
is an allowed center of projection. The algorithm runs in O(n log n) .time and uses 0(n) space.

Next we describe an alternate second. approach for computing perspective projections with distinct s-coordinates
also in O(n log n) time and linear space. Although this algorithm is more complicated up to a constant factor, unlike
the previous algorithm, it yields an unbounded interval of valid projection centers located on the z-axis. This may
prove useful for stability purposes in some applications in computer vision.26

This second algorithm is based on the observation that when we project a point set S from a projection center c
on the z-axis onto the sy-plane, two points i and Pj of S project to points with the same s-coordinate if and only
if, in the orthogonal projection 5' of S onto the sz-plane, we have that the projected points p and p are collinear
with the projection center c. So, to compute a perspective projection of the point set S with distinct s-coordinates,
it suffices to determine a point in the z-axis that is non collinear with any two points of 5' This is only possible
when the points of 5' are distinct.

The algorithm uses the results from Gomez et al. ,'for computing regular orthogonal projections of planar points
onto a line, and of 3-dimensional points onto a plane.

As with the first algorithm we start by changing the coordinate system, if necessary, so that S lies strictly in the
first octant of the coordinate space. Then we rotate S so that the orthogonal projection 5' of S onto the sz-plane is a
regular projection, i.e., the points of 5' are distinct. This can be done in O(n log n) time.7 Let 5" be the projection
of 5' onto the s-axis. Note that 5" may have duplicates. Now perform a lexicographic sorting of 5" to first delete
duplicates and then compute the smallest (non-zero) gap between an adjacent pair in the points of 5" that are not
discarded. Call this gap Gx_mjn . This step is also O(n log n). Next compute the difference in z-coordinates between
the highest and lowest (maximum and minimum z-coordinates) points in 5'. Call this difference Hz_maz. Let Smaz
equal the ratio of Hz_maz over Gx_mjn. Note that Smaz 5 an upper bound on the maximum slope (nearest to
vertical) determined by any pair of points in 5'. This follows from the fact that 5' is a regular orthogonal projection
of S.

Finally, let P0 denote the point on the xz-plane whose s and z coordinates are equal to the maximum x and
z coordinates, respectively, of the points in 5'. We construct a line with slope equal to the negative of 5ma such
that it passes through P0 and we compute the intersection point CO that this line makes with the z-axis. By this
construction any point on the z-axis above c0 cannot be collinear with two points of 5' . Therefore the perspective
projection of S from any such center above CO will not have two points with the same s-coordinate.

7. CONCLUDING REMARKS
Almost all the complexity results discussed in this paper are restricted to inputs of idealized points and line segments
viewed under the real RAM model of computation. This may be appropriate for some areas such as knot theory and
vector graphics. For other areas, such as computer vision, such an assumption implies infinite resolution images, an
unrealistic assumption. One approach to solving this more practical problem would be to give some thickness to the
objects, i.e., consider the points as little balls and the edges of the polygons as thin cylinders, and then to re-design
the algorithms accordingly. This may turn out to be rather expensive. In practice it may be much more efficient
to perform a half-dozen random rotations to obtain a nice projection. After all, for many problems in the idealized
infinite precision model, a single random rotation yields a nice projection with probability one. Computing optimal
projections on the other hand is another matter. Here approximate algorithms may yield efficient solutions that are
also near-optimal, but these are open problems for future investigation.
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