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ABSTRACT

Deep Learning Network

The surgical pathology workflow currently adopted in the clinic uses staining to
reveal tissue architecture within thin sections. A trained pathologist then
conducts a visual examination of these slices and, as the investigation is based
on an empirical assessment, a certain amount of subjectivity is unavoidable.
Furthermore, the reliance on such external contrast agents like hematoxylin
and eosin (H&E), albeit a well-established method, makes it difficult to
standardize color balance, staining strength, and imaging conditions, hindering
automated computational analysis. In response to these challenges, we applied
spatial light interference microscopy (SLIM), a label-free method that generates
contrast based on the intrinsic tissue refractive index signatures. Thus, we
reduce human bias and make the image data comparable across instruments
and clinics. We applied a Mask R-CNN deep learning algorithm to the SLIM data
to achieve an automated colorectal cancer screening procedure, i.e., classifying
normal vs. cancer specimens. Our results obtained on a tissue microarray
consisting of specimens from 132 patients, resulted in 91% accuracy for gland
detection, 99.71% accuracy in gland-level classification, and 97% accuracy in
core-level classification. A SLIM tissue scanner accompanied by an application-
specific deep learning algorithm may become a valuable clinical tool, enabling
faster and more accurate assessment by the pathologist.
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• SLIM system implemented as add-on to an existing phase contrast 
microscope. Pol, polarizer and SLM, spatial light modulator. 

• The four independent frames corresponding to the 4 phase shifts imparted 
by the SLM are shown for a tissue sample.
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• Mask R-CNN (regional convolutional neural network) framework contains 
two stages: scan image and generate regional proposals for possible 
objects; classify the proposals  and generate bounding boxes and pixel-wise 
masks. 

• This specific network adopts a backbone of ResNet101 plus FPN for feature 
extraction.  RPN (Region Proposal Network) scans over backbone feature 
maps, which allows reuse of the extracted features and remove duplicate 
calculations.  

• The final masks for objects will be scaled up to match the ROI bounding 
box. The other branch, of fully connected layers, takes the outputs of the 
ROI Pooling and outputs two values: a class label and a bounding box 
prediction per object.

Segmentation & Classification Gland Capturing Performance By Training Epoch
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• a) Images of 32 testing cores. 
• b) Cancer core. 
• c) Prediction of gland detection and classification on the core in b). 
• d) Zoom-in image of the cancer gland boxed in c).  
• e) Normal core. f) Prediction of gland detection and classification.
• g) Zoom-in image of the normal gland boxed in
• f). Red color represents cancer and green color normal glands.

Gland Detection Errors

. a) Ground truth (manual) segmentation of cancer glands. b) Network 

prediction, showing that the regions in the dash boxes were missed. c-d) 

Similar illustration as in a-b). e) Ground truth (manual) segmentation of 

normal glands. f) Network prediction, showing that the regions in the dash 

boxes were additional true positives. g-h) Similar illustration as in e-f). Note 

that all errors and additions occur at the boundaries of the cell cores.

Performance of Classification, Detection and 
Diagnosis

a) Confusion matrix, which shows that 95 instances of the detected cancer 
glands are correctly classified, while 1 is wrongly classified as normal. All the 
248 instances of the detected normal glands are perfectly classified. b) 
Confusion matrix, which shows that 96 cancer glands are detected, with 95 
correctly classified and 1 wrongly classified;  20 cancer glands are missed. 248 
normal glands are detected and correctly classified, while 3 normal glands are 
missed. c) Confusion matrix, which shows that all the 14 cancer cores are 
correctly diagnosed as cancer; 17 out of the 18 normal images are correctly 
diagnosed, while 1 normal core is wrongly diagnosed as cancer.  d) Gland 
detection performance at three different detection confidence scores: 90%, 
80%, and 70%, as indicated. 

The network’s gland classification performance is shown at three
different training epochs, the 50th , 100th , and 390th , as indicated. The
AUC (Area under the ROC Curve) is 0.87, 0.90, and 0.91, respectively.

Summary & Discussions

In summary, we demonstrated promising results in colorectal tissue segmentation, 
classification, and whole core diagnosis, by combining Mask R-CNN deep learning 
network to SLIM images. The 91% of gland detection accuracy, the near perfect 
classification accuracy, and the 97% of whole core diagnosis accuracy show that this 
method can effectively assist pathologists to screen colorectal cancers. Histopathology 
combined with colonoscopy tissue resection remains the gold-standard for colorectal 
cancer diagnosis.  However, we expect our method to complement valuable 
pathological information that can improve screening accuracy, reduce manual work, 
and multiply throughput at clinics. The SLIM module can be integrated with incumbent 
microscopes across clinics and then used a valuable tool to optimize colorectal 
screening workflows. Moreover, the SLIM module can also be used to quantify the 
aggressiveness of the cancer disease or detect other types of cancer. 

With its common-path interferometric geometry, SLIM is highly reliable in providing 
nanoscale information about tissue architecture, enabling a high sensitivity and 
specificity for pathological examination. The AI inference method can be integrated 
with SLIM acquisition software. As the inference runs faster than the acquisition of a 
SLIM frame and it can also be operated parallelly, we anticipate performing image 
acquisition and diagnosis in a real-time way. In terms of overall throughput, the SLIM 
tissue scanner can match commercial whole slide scanners that only conduct bright 
field imaging on stained tissue sections. Theoretically, the diagnosis, with all critical 
areas of interest being highlighted for pathologists, can be given while the scanning is 
being done. 
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