KEYWORDS: Thermography, Quantum cascade lasers, Near field scanning optical microscopy, Spatial resolution, Temperature metrology, Infrared imaging, Infrared radiation, Modulation, Near field
The fundamental optical diffraction in infrared microscopes limits their spatial resolution to about ~5μm and hinders the detailed observation of heat generation and dissipation behaviors in micrometer-sized optoelectronic and semiconductor devices, thus impeding the understanding of basic material properties, electrical shorts and structural defects at a micron and sub-micron scale. We report the recent development of a scanning near-field optical microscopy (SNOM) method for thermal imaging with subwavelength spatial resolution. The system implements infrared fiber-optic probes with subwavelength apertures at the apex of a tip for coupling to thermal radiation. Topographic imaging and tip-to-sample distance control are enabled by the implementation of a macroscopic aluminum tuning fork of centimeter size to support IR thermal macro-probes. The SNOM-on-a-fork system is developed as a capability primarily for the thermal profiling of MWIR quantum cascade lasers (QCLs) during pulsed and continuous wave (CW) operation, targeting QCL design optimization. Time-resolved thermal measurements with high spatial resolution will enable better understanding of thermal effects that can have a significant impact on a laser's optical performance and reliability, and furthermore, will serve as a tool to diagnose failure mechanisms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.