Quantum particles are known to be faster than classical when they propagate stochastically on certain graphs. A time needed for a particle to reach a target node on a distance, the hitting time, can be exponentially less for quantum walks than for classical random walks. It is however not known how fast would interacting quantum particles propagate on different graphs. Here we present our results on hitting times for quantum walks of identical particles on cycle graphs, and relate the results to our previous findings on the usefulness of identical interacting particles in quantum information theory. We observe that interacting fermions traverse cycle graphs faster than non-interacting fermions. We show that the rate of propagation is related to fermionic entanglement: interacting fermions keep traversing the cycle graph as long as their entanglement grows. Our results demonstrate the role of entanglement in quantum particles propagation. These results are of importance for understanding quantum transport properties of identical particles.
Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.