The Twin ANthropogenic Greenhouse Gas Observers (TANGO) mission will monitor and quantify greenhouse gas emissions at the level of individual facilities. A consortium consisting of ISISpace, TNO, SRON and KNMI are developing the TANGO mission for the ESA Scout program. ISISpace is the prime contractor and responsible for the spacecraft, SRON and KNMI are responsible for the atmospheric science, while TNO is developing the instruments. The TANGO space segment consists of two agile 16U CubeSat satellites flying closely in tandem, each equipped with an imaging spectrometer. TANGO Carbon measures the emission of CH₄ and CO₂ in the SWIR1 spectral band (1590-1675 nm at 0.45-nm spectral resolution), while TANGO Nitro measures the emission of NO₂ in the visible spectral range (405- 490 nm at 0.6-nm spectral resolution). Both instruments are reflective pushbroom spectrometers, made almost entirely from aluminum, and will cover a 30-km swath from a 500-km altitude with a spatial resolution of 300 m. The instruments share a similar architecture, using freeform mirrors to achieve high optical performance in a compact 8U envelope. In this paper, we will present the design and performance of the Carbon instrument, where a key engineering challenge is to achieve the desired spatial resolution and SNR from the limited instrument volume (8U). A tight integration of optical and mechanical design, coupled to detailed tolerance, alignment, straylight and STOP (structural thermal optical performance) analyses, allow us to reach that goal.
The Φsat-2 mission from the European Space Agency (ESA) is part of Φsat mission lineup aimed to address innovative mission concepts making use of advanced onboard processing including Artificial Intelligence. Φsat-2 is based on a 6U CubeSat with a medium-high resolution VIS/NIR multispectral payload (eight bands plus NIR) combined with a hardware accelerated unit capable of running several AI applications throughout the mission lifetime. As images are acquired, and after the application of dTDI processing, the raw data is transferred through SpaceWire to a payload pre-processor where level L1B will be produced. At this stage radiometric and geometric processing are carried out in conjunction with georeferencing. Once the data is pre-processed, it is fed to the AI processor through the primary computer and made available to the onboard applications; orchestration is done via a dedicated version of the NanoSat MO Framework. The following applications are currently baselined and additional two will be selected via dedicated AI Challenge by Q3 2023: SAT2MAP for autonomous detection of streets during emergency scenarios; Cloud Detection application and service for data reduction; the Autonomous Vessel Awareness to detect and classify vessel types and the deep compression application (CAE) that has the goal of reducing the amount of acquired data to improve the mission effectiveness.
The current paper introduces the Twin ANthropogenic Greenhouse Gas Observers (TANGO) instruments and mission. The purpose of TANGO is monitoring and quantifying greenhouse gas emissions, with a focus on characterizing emission sources down to the level of individual facilities. The TANGO mission was developed for the ESA-Scout program by a consortium consisting of ISISpace, TNO, SRON and KNMI. It consists of two agile CubeSat satellites that fly in tandem, with less than 1 minute between observations of the same target, each satellite equipped with a spectrometer of the TNO Spectrolite family of instruments that observes a different part of the spectrum. TANGO-Carbon measures emission of CH4 and CO2 in the SWIR1 spectral band. TANGO-Nitro measures emission of NO2 in the visible spectral range. The Nitro instrument has a multifunctional role, using the NO2 measurements to improve the detection of (anthropogenic) CO2 plumes, deriving historic CO2 emission trends based on available global NO2 observations, and quantifying the possible CO2 contribution in mixed CH4-CO2 sources. Each TANGO instrument fits in an 8U volume (on a 16U platform) and are all-aluminium, reflective pushbroom spectrometers covering a 30-km swath from a 500-km altitude, with a ground sampling distance of 300 m × 300 m. In this paper we will present the mission, the shared instrument concept, as well as the design and performance of both Carbon and Nitro instruments.
Additional presentation content can be accessed on the supplemental content page.
Anthropogenic emissions of reactive nitrogen species have significantly increased, largely because of discharges from livestock, agricultural intensification and fertilizer use. Reactive nitrogen affects air quality, sensitive natural ecosystems, and the carbon balance.
The proposed mission aims at providing high spatial resolution measurements (<1 km) of NH3. These data will complement future hyperspectral sounding missions, monitoring emissions over industrial, domestic, and agricultural hotspots. The mission is based on a compact hyperspectral imager in the Thermal Infrared spectral range, deployed on a small satellite platform. We report on the mission design and objectives and address the technical feasibility of retrieving NH3 with a small satellite.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.