The optimized optical design of GaN resonant cavity light emitting didoes (RCLEDs) emitting at 510nm for maximum extraction efficiency into numerical apertures (NAs) of 1.0 (total emission) and 0.5 (typical plastic optical fiber NA) are determined using a modeling tool based on the simulation of dipole emission in a multilayer structure. The optimization is performed for a metal-AlGaN/GaN DBR cavity structure as functions of the aluminum fraction in the DBR and the internal quantum well (QW) emission linewidth. The optimum number of DBR pairs is shown to depend on both these parameters together and the emission NA, and varies between 3 and 14. The maximum calculated extraction efficiency for a metal-AlN/GaN cavity structure, assuming a QW emission linewidth of 30nm, is 0.18 (0.055) into an emission NA of 1.0 (0.5). The position of the QW relative to the metal mirror is shown to be the crucial device parameter in determining the extraction efficiency of the RCLED. Simulations show farfield measurements should provide information on the position of the QWs in the cavity. The reduction in the spectral emission linewidth of the RCLED due to the cavity is also modeled.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.