Remote Telescope Markup Language (RTML) is an XML-based protocol for the transport of the high-level description of a set of observations to be carried out on a remote, robotic or service telescope. We describe how RTML is being used in a wide variety of contexts: the transport of service and robotic observing requests in the Hands-On UniverseTM, ACP, eSTAR, and MONET networks; how RTML is easily combined with other XML protocols for more localized control of telescopes; RTML as a secondary observation report format for the IVOA's VOEvent protocol; the input format for a general-purpose observation simulator; and the observatory-independent means for carrying out request transactions for the international Heterogeneous Telescope Network (HTN).
In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory.
We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.
Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.
Linking ground based telescopes with astronomical satellites, and using the emerging field of intelligent agent architectures to provide crucial autonomous decision making in software, we have combined data archives and research class robotic telescopes along with distributed computing nodes to build an ad-hoc peer-to-peer heterogeneous network of resources. The eSTAR Project* uses intelligent agent technologies to carry out resource discovery, submit observation requests and analyze the reduced data returned from a meta-network of robotic telescopes. We present the current operations paradigm of the eSTAR network and describe the direction of in which the project intends to develop over the next several years. We also discuss the challenges facing the project, including the very real sociological one of user acceptance.
The eSTAR Project uses intelligent agent technologies to carry out resource discovery, submit observation requests and analyze the reduced data returned from a network of robotic telescopes in an observational grid. The agents are capable of data mining and cross-correlation tasks using on-line catalogues and databases and, if necessary, requesting additional data and follow-up observations from the telescopes on the network. We discuss how the maturing agent technologies can be used both to provide rapid followup to time critical events, and for long term monitoring of known sources, utilising the available resources in an intelligent manner.
KEYWORDS: Telescopes, Astronomy, Robotics, Databases, Astronomical telescopes, Space telescopes, Astrophysics, Prototyping, Control systems, Data archive systems
The e-STAR (e-Science Telescopes for Astronomical Research) project uses GRID techniques to develop the software infrastructure for a global network of robotic telescopes. The basic architecture is based around Intelligent Agents which request data from Discovery Nodes that may be telescopes or databases. Communication is based on a development of the XML RTML language secured using the Globus I/O library, with status serving provided via LDAP. We describe the system architecture and protocols devised to give a distributed approach to telescope scheduling, as well as giving details of the implementation of prototype Intelligent Agent and Discovery Node systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.