KEYWORDS: Tumors, Tissues, Skin, Algorithm development, 3D image processing, Angiography, 3D image reconstruction, Optoacoustics, Reconstruction algorithms, In vivo imaging
We demonstrate the opportunities of the developed 3D optoacoustic image processing algorithm to characterize numerically the vasculature parameters in different applications including monitoring of tumor angiogenesis and assessing skin aging.
Our work was devoted to the experimental comparison of two ultra-wideband detectors based on PVDF piezofilms of different thickness demonstrating different quality of optoacoustic imaging of vessels in tumor and normal tissues.
Using optoacoustic microscopy, a radiation-induced increase in the fragmentation of experimental tumor small vessels, as well as the formation of large hemoglobin-containing structures were revealed within first days after treatment.
The possibilities of optoacoustic microscopy for comparison of vascular network of different tumor models as well as for investigation of tumor vessels response to radiation therapy were demonstrated.
We present the results of combined fluorescence and optoacoustic monitoring of tumor treatment using novel photoactivatable multi-inhibitor liposomes with BPD and Irinotecan providing a synergetic effect of PDT and chemotherapeutic impact.
KEYWORDS: Picosecond phenomena, Luminescence, Photodynamic therapy, Tissues, Optical properties, In vivo imaging, Animal model studies, Tumor growth modeling, Monte Carlo methods, Absorption
Employment of chlorin-based photosensitizers featuring two peaks in absorption spectrum as drugs for photodynamic therapy allows for dual-wavelength fluorescence imaging providing estimation of photosensitizer localization depth.
We report on the comparative analysis of the effect of photodynamic therapy performed with red or/and blue light on a tumor model in animals. Results of optical monitoring are in agreement with visual observations and histology studies.
Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150 J / cm2. The study was performed on the intact skin of a rabbit ear inner surface, with the use of chlorin e6 as a PS. PDT procedure protocol included monitoring of the treated site with fluorescence imaging technique to evaluate PS accumulation and photobleaching, as well as with optical coherence tomography (OCT) to register morphological and functional responses of the tissue. Optical diagnostic observations were compared with the results of histopathology examination. We demonstrated that PDT procedures with the considered regimes induce weaker organism reaction manifested by edema in normal tissue as compared to irradiation-only exposures with the same light doses. The light doses delivered with red light induce weaker tissue reaction as compared to the same doses delivered with blue light only or with a combination of red and blue lights in equal parts. Results of in-vivo OCT monitoring of tissue reaction are in agreement with the results of histopathology study.
Dual-wavelength photodynamic therapy is a photodynamic therapy (PDT) modality combining therapeutic effects of irradiation at two wavelengths of different region of visible range. In this paper we report on comparative analysis of single- and dual-wavelength PDT regimes based on multimodal optical monitoring of tissue response with histologic verification. Morphological and functional tissue responses to PDT procedure with chlorin-based photosensitizer (PS) were studied at the normal skin of a rabbit ear inner surface. Multimodal optical monitoring was performed by OCT and dual-wavelength fluorescence technique. The studied doses vary from 50 to 150 J/cm2 delivered separately at 405 or 660 nm, or at both wavelengths together in the equal dose.
In this study we present a complex approach to photodynamic therapy (PDT) with chlorin based photosensitizers including Monte Carlo based planning and prediction of optical diagnostics results, intra-procedure dual-wavelength fluorescence monitoring allowing to evaluate PS accumulation and photobleaching, and monitoring of tissue response with optical coherence tomography (OCT). The approach was employed to compare the effects of different PDT regimens in normal and tumor tissues and the results of non-invasive optical diagnostics were matched with results of histologic examination, including hematoxylin-eosin and Mallory staining. The considered doses are in the range 50-150 J/cm2 for normal tissues and 150-275 J/cm2 for tumor tissues, single wavelength (405 and 660 nm) and dual-wavelength regimes are studied.
We propose a new approach to monitoring of photodynamic therapy (PDT) of glioblastoma with the use of targeted nanoconstructs containing a photosensitizer (PS) benzoporphyrin derivative (BPD) and IRDye800 dye, antibodies for efficient accumulation of the drug in a tumor, and a chemotherapeutic agent for combined effect on tumor cells. Monitoring of PDT is based on the simultaneous fluorescent and optoacoustic (OA) imaging. Fluorescent imaging provides visualization of fluorescence agents with high molecular sensitivity, and monitoring of the effectiveness of PDT by PS photobleaching. OA allows to examine the vascular pattern of the tumor environment, as well as assess the tumor depth. IRDye800 is a better contrast agent in comparison to BPD due to red shifted spectral characteristics and higher fluorescence quantum yield. The results of numerical simulations have been verified in phantom studies using fluorescence and optoacoustic experimental setups and an agar phantom with optical characteristics similar to those of murine brain.
Photodynamic therapy (PDT) proved itself as a powerful tumor and non-tumor pathologies treatment tool. Photosensitizers (PS), which are employed as therapeutic agents for PDT, feature fluorescent properties. Thus, PDT provides the principles of theranostics when diagnostics is performed during treatment. The estimation of PS localization within the tissue is of critical importance for PDT planning. Fluorescence imaging is commonly applied for the monitoring of PS accumulation within the tissue, however, it does not provide with the in-depth PS distribution. Chlorinbased PS feature two pronounced peaks in their excitation spectra corresponding to 402 nm and 662 nm, which provides additional diagnostic possibilities. The ratio of fluorescence signals corresponding to different excitation wavelengths is shown to be a criterion for the evaluation of PS penetration depth after topical application and PS localization within the tissue after intravenous injection. The study is based on numerical simulation applying Monte Carlo technique. The results of numerical simulations are verified with phantom experiments results.
Employment of chlorin-based photosensitizers (PSs) provides additional advantages to photodynamic therapy (PDT) due to absorption peak around 405 nm allowing for superficial impact and efficient antimicrobial therapy. We report on the morphological and clinical study of the efficiency of PDT at 405 nm employing chlorin-based PS. Numerical studies demonstrated difference in the distribution of absorbed dose at 405 nm in comparison with traditionally employed wavelength of 660 nm and difference in the in-depth absorbed dose distribution for skin and mucous tissues. Morphological study was performed at the inner surface of rabbit ear with histological examinations at different periods after PDT procedure. Animal study revealed tissue reaction to PDT consisting in edema manifested most in 3 days after the procedure and neoangiogenesis. OCT diagnostics was confirmed by histological examination. Clinical study included antimicrobial PDT of pharynx chronic inflammatory diseases. It revealed no side effects or complications of the PDT procedure. Pharyngoscopy indicated reduction of inflammatory manifestations, and, in particular cases, hypervascularization was observed. Morphological changes were also detected in the course of monitoring, which are in agreement with pharyngoscopy results. Microbiologic study after PDT revealed no pathogenic bacteria; however, in particular cases, saprophytic flora was detected.
Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod
For correct identification of fluorophores in fluorescence lifetime imaging invivo it is important to account for widening of fluorescent kinetics curve due to light scattering and absorption in turbid medium. This widening leads to the difference between real and measured lifetimes of a fluorescent agent. We studied this effect for media with different optical properties and lifetimes corresponding to those of real fluorophores applying Monte-Carlo simulation. We found that for the fluorophore depths up to 15 mm for reduced scattering coefficient varying from 0.15 to 4.8 mm-1 and absorption coefficient varying from 0.0025 to 0.08 mm-1 this difference is insignificant for long-lived fluorophores (typical fluorescent proteins), however, it should be taken into account for fluorophores with lifetimes of several hundred picoseconds. Results of numerical simulation are confirmed by the results of the model experiment.
Correct identification of different fluorophores in the fluorescence lifetime imaging in vivo requires accounting for distortion of the measured fluorescent kinetics curve due to light scattering and absorption in medium. This distortion induces the difference between real and measured lifetimes of a fluorophore. We obtained analytical expression based on diffuse approximation of radiation transfer equation that allows to refine estimating the lifetime of a fluorophore. It was shown that our approach can be applied both for analytic kinetics curves obtained by diffuse approximation, Monte Carlo simulated curves and results of model experiment. Analytical and Monte Carlo simulated curves were obtained for media with different optical properties and lifetimes corresponding to those of real fluorophores. Results of numerical simulation are confirmed by the results of the model experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.