Recently, we developed a new family of 3D photonic hollow resonators which theoretically allow tight confinement
of light in a fluid (gaz or liquid): the photon cages. These new resonators could be ideal for sensing applications
since they not only localize the electromagnetic energy in a small mode volume but also enforce maximal overlap
between this localized field and the environment (i.e. a potential volume of nano-particles). In this work, we will
present numerical and experimental studies of the interaction of a photon cage optical mode with nano-emitters. For
this, PbS quantum dot emitters in a PDMS host matrix have been introduced in photon cages designed to have
optimal confinement properties when containing a PDMS-based active medium. Photoluminescence measurements
have been performed and the presence of quantum dot emitters in the photon cages has been demonstrated.
This work summarizes how plasmonic phenomena can enhance the fluorescence of lanthanides (Ln3+) coupled to metallic nanoparticles (MNP). Lanthanide-ions emission lines, based on 4f-4f transitions, are weak due to Laporte selection rules for optical transitions. This effect results in low absorption cross sections for excitation and long lifetimes for emission processes. We propose to use metallic nanoparticles in order to determine how plasmonic nanoparticles can enhance absorption and emission of two emblematic lanthanides ions used for bio-labeling and energy conversion, i.e., Eu3+ and Er3+. This work quantifies the average enhancement factor (AEF) is expected for different geometries of nanoparticle structures and compares it to previous studies. Then, we theoretically and numerically investigate metal-enhanced fluorescence of plasmonic core–shell nanoparticles doped with lanthanides ions. The shape and size of the particles are engineered to maximize the average enhancement factor of the overall doped shell. We show with theoretical considerations and numerical studies that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare-earth ion’s excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained under similar conditions (plasmon-mediated enhancement) or when a metal–Ln3+ energy-transfer mechanism is involved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.