Metasurfaces control light propagation at the nanoscale for applications in both free-space and surface-confined geometries. However, all recent designs have exhibited concepts using geometrically fixed structures, or used materials with excessive propagation losses, thereby limiting potential applications. Here we show how to overcome these limitations using a reconfigurable hyperbolic metasurface comprising a heterostructure of isotopically enriched hexagonal boron nitride (hBN) in direct contact with a phase-change material (PCM), single crystal vanadium dioxide (VO2). Metallic and dielectric domains in VO2 provide spatially localized changes in the local dielectric environment to tune the wavelength of hyperbolic phonon polaritons (HPhPs) supported in hBN by a factor of 1.6. This contrasts with earlier work using surface phonon polaritons, where propagation could only be observed above a low-loss dielectric phase. We demonstrate the first realization of in-plane HPhP refraction, which obeys Snell’s law and the means for launching, reflecting and transmitting HPhPs at the PCM domain boundaries. To demonstrate practical applications of this platform, we show how hBN could be combined with either VO2 or GeSbTe glasses to make refractive nanophotonic waveguides and lenses. This approach offers control of in-plane HPhP propagation at the nanoscale and exemplifies a reconfigurable framework combining hyperbolic media and PCMs to design new optical functionalities including resonant cavities, beam steering and waveguiding.
KEYWORDS: Indium gallium nitride, Infrared radiation, Near field scanning optical microscopy, Dielectrics, Near field optics, Heterojunctions, Infrared imaging, Spectroscopy, Imaging spectroscopy, Super resolution microscopy
Group III-V semiconductor nanostructures have been at the forefront of numerous
applications in high-power, high frequency optical and optoelectronic devices.
Although, significant progress has been made in fabrication and characterization of
these materials, there are still challenges in the formation of compositional uniform
indium-rich ternary epilayers, embedded in wide bandgap III-N’s. For example,
nanoscale lateral compositional inhomogeneities at the growth surface lead to bulk
phase segregations will reduce the structural quality of the semiconductor
heterostructures both in macro and nanometer scales if not controlled through the
process parameter space at the surface. Studying and understanding the fundamental
physical and structural properties at the nanoscale level and correlating the findings
with processing parameters is essential to mitigate compositional fluctuations in
multinary III-N compounds. In this work we introduce infrared scattering type
scanning near-field microscopy (s-SNOM) for spectroscopic study of nanoscale
optical properties of InGaN epilayers on GaN- or InN templates. S-SNOM possesses
spatial resolution of few nanometers (~15 nm) far below the diffraction limit and
allows spectroscopic imaging of simultaneous chemical and structural information
correlated with morphology. We correlate s-SNOM near-field amplitude and phase
optical contrasts at infrared frequencies to the dielectric constants and growth
parameters of InN/InGaN heterostructures and/or single nanoparticles. We observed
that both the real and imaginary dielectric function values of mono-/bi-layers of
InN/InGaN can be extracted from s-SNOM data. By performing nano-spectroscopy
on lithographically patterned samples, we also show that self-assembled InGaN
nanoparticles have similar dielectric function values as that of thin film InGaN.
This contribution presents results on the structural and optoelectronic properties of InN layers grown on AlN/sapphire
(0001) templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPAMOCVD).
The AlN nucleation layer (NL) was varied to assess the physical properties of the InN layers. For ex-situ
analysis of the deposited structures, Raman spectroscopy, Atomic Force Microscopy (AFM), and Fourier Transform
Infrared (FTIR) reflectance spectroscopy have been utilized. The structural and optoelectronic properties are assessed by
Raman-E2 high FWHM values, surface roughness, free carrier concentrations, mobility of the free carriers, and high
frequency dielectric function. This study focus on optimizing the AlN nucleation layer (e.g. temporal precursor
exposure, nitrogen plasma exposure, plasma power and AlN buffer growth temperature) and its effect on the InN layer
properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.