Two key areas of emphasis in contemporary experimental exoplanet science are the detailed characterization of transiting terrestrial planets and the search for Earth analog planets to be targeted by future imaging missions. Both of these pursuits are dependent on an order-of-magnitude improvement in the measurement of stellar radial velocities (RV), setting a requirement on single-measurement instrumental uncertainty of order 10 cm / s. Achieving such extraordinary precision on a high-resolution spectrometer requires thermomechanically stabilizing the instrument to unprecedented levels. We describe the environment control system (ECS) of the NEID spectrometer, which will be commissioned on the 3.5-m WIYN Telescope at Kitt Peak National Observatory in 2019, and has a performance specification of on-sky RV precision <50 cm / s. Because NEID’s optical table and mounts are made from aluminum, which has a high coefficient of thermal expansion, sub-milliKelvin temperature control is especially critical. NEID inherits its ECS from that of the Habitable-Zone Planet Finder (HPF), but with modifications for improved performance and operation near room temperature. Our full-system stability test shows the NEID system exceeds the already impressive performance of HPF, maintaining vacuum pressures below 10 − 6 Torr and a root mean square (RMS) temperature stability better than 0.4 mK over 30 days. Our ECS design is fully open-source; the design of our temperature-controlled vacuum chamber has already been made public, and here we release the electrical schematics for our custom temperature monitoring and control system.
The Habitable-Zone Planet Finder (HPF) is a stabilized, fiber-fed, NIR spectrometer recently commissioned at the 10m Hobby-Eberly telescope (HET). HPF has been designed and built from the ground up to be capable of discovering low mass planets around mid-late M dwarfs using the Doppler radial velocity technique. Novel apects of the instrument design include mili-kelvin temperature control, careful attending to fiber scrambling, and optics, mounting and detector readout schemes designed to minimize drifts and maximize the radial velocity precision. The optical design of the HPF is an asymmetric white pupil spectrograph layout in a vacuum cryostat cooled to 180 K. The spectrograph uses gold-coated mirrors, a mosaic echelle grating, and a single Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7-micron cutoff covering parts of the information-rich z, Y and J NIR bands at a spectral resolution of R~55,000. The use of 1.7 micron H2RG enables HPF to operate warmer than most other cryogenic instruments- with the instrument operating at 180K (allowing normal glasses to be used in the camera) and the detector at 120K. We summarize the engineering and commissioning tests on the telescope and the current radial velocity performance of HPF. With data in hand we revisit some of the design trades that went into the instrument design to explore the remaining tall poles in precision RV measurements in the near-infrared. HPF seeks to extend the precision radial velocity technique from the optical to the near-infrared, and in this presentation, we seek to share with the community our experience in this relatively new regime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.