Applications such as LIDAR, ranging/ sensing, and optical communications all require photonic components, such as sources, detectors, and modulators, to be integrated into a single system. For spaceborne applications, SWaP (size, weight and power) is a key consideration: a monolithic indium phosphide (InP) Photonic Integrated Circuit (PIC) can integrate many components onto a chip with a footprint of a few square mm. Photonic Wirebonding (PWB) enables seamless integration of best-in-class optical devices from disparate materials. Connecting and mode-matching different photonic components enables versatility and functionality unachievable by other methods, facilitating co-packaging. PICs and PWBs do not yet have spaceflight heritage: demonstrating increased Technology Readiness Level (TRL) is a key step toward use in orbital and spaceborne missions. Freedom Photonics presents our first hermetic photonic wirebonded PIC package, alongside recent environmental testing results demonstrating that our PIC and PWB technologies are suitable for the harsh conditions of launch and spaceflight: shock, vibration, radiation, and temperature cycling.
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 μm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of ~95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.
This work describes the design and testing of a highly-tunable differential absorption lidar (DIAL) instrument utilizing an all-semiconductor transmitter. This new DIAL instrument transmitter has a highly-tunable external cavity diode laser (ECDL) as a seed laser source for two cascaded commercial tapered amplifiers. The transmitter has the capability of tuning over a range of ~ 17 nm centered at about 832 nm to selectively probe several water vapor absorption lines. This capability has been requested in other recent DIAL experiments for wavelengths near 830 nm. The transmitter produces pulse energies of approximately 0.25 µJ at a repetition rate of 20 kHz. The linewidth is exceptionally narrow at <0.3 MHz, with frequency stability that has been shown to be +/- 88 MHz and spectral purity of 0.995. Tests of the DIAL instrument to prove the validity of its measurements were undertaken. Preliminary water vapor profiles, taken in Bozeman, Montana, agree to within 5-60% with profiles derived from co-located radiosondes 800 meters above ground altitude. Below 800 meters, the measurements are biased low due to a number of systematic issues that are discussed. The long averaging times required by low-power systems have been shown to lead to biases in data, and indeed, our results showed strong disagreements on nights when the atmosphere was changing rapidly, such as on windy nights or when a storm system was entering the area. Improvements to the system to correct the major systematic biases are described.
A compact, widely tunable semiconductor based water vapor differential absorption lidar (DIAL) has been built and
tested at Montana State University (MSU). The laser transmitter uses a tunable external cavity diode laser (ECDL) with
a center wavelength of 830 nm to injection seed two cascaded tapered semiconductor optical amplifier (SOA), producing
1.5 micro joule pulses at a pulse repetition rate and pulse width duration of 20 kHz and 1000 ns respectively, allowing
for water vapor number density retrievals up to approximately 4 km. Water vapor number density profiles collected with
the MSU water vapor DIAL will be compared with co-located radiosonde measurements, demonstrating the instruments
ability to measure daytime and nighttime water vapor profiles in the lower troposphere.
It is widely agreed that water vapor is one of the most important gasses in the atmosphere with regards to its role in local weather, global climate, and the water cycle. Especially with the growing concern for understanding and predicting global climate change, detailed data of water vapor distribution and flux and related feedback mechanisms in the lowest 3 km of the troposphere, where most of the atmospheric water vapor resides, are required to aid in climate models. Improved capabilities to monitor range-resolved tropospheric water vapor profiles continuously in time at many locations are needed. One method of obtaining this data in the boundary layer with improved vertical resolution relative to passive remote sensors is with a Differential Absorption LIDAR (DIAL) utilizing a compact laser diode source. Montana State University, with the expertise of its laser source development group, has developed a compact water vapor DIAL system that utilizes a widely tunable amplified external cavity diode laser (ECDL) transmitter. This transmitter has the ability to tune across a 17 nm spectrum near 830 nm, allowing it access to multiple water vapor absorption lines of varying strengths. A novel tuning system tunes and holds the ECDL to within +/- 88 MHz (0.20 pm) of the selected wavelength. The ECDL acts as a seed source for two commercial cascaded tapered amplifiers. The receiver uses commercially available optics and a fiber-coupled Avalanche Photodiode (APD) detector. Initial nighttime measurements of water vapor profiles taken over Bozeman, Montana, with comparisons to radiosonde-derived profiles will be presented.
Recent advances using electronic feedback to control the optical cavity length of external cavity diode lasers (ECDLs) have led to extended continuous tuning ranges. Mode-hop-free tuning over more than 65 GHz has been demonstrated. The ability to tune ECDLs asross a wide range is particularly useful to differential absorption lidar (DIAL) systems that use ECDLs as seed laser sources. Experiments using a multiple-pass gas absorption cell are performed to test a widely tunable, amplified ECDL DIAL transmitter with this extended tuning range system. Experimental results show that the system can be tuned to and maintained at a user-defined wavelength for one hour, then tuned to and maintained at a second user-defined wavelength for one hour without mode hopping. This tuning is successfully accomplished between wavelengths separated by approximately 44 GHz. A computer-controlled feedback loop in the tuning system tunes and holds the laser system to the on- and off-line wavelengths to within ±88 MHz. The laser power transmitted through the gas absorption cell is monitored and used to perform a differential absorption calculation to find the number density of water vapor molecules within the cell. The measured value is in agreement with a HiTRAN prediction of the expected value.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.