The subaperture stitching technique requires the registration of freeform subapertures into global coordinate frame before stitching in order to compute entire freeform wavefront. A scanning Shack-Hartman Sensor (SHS) utilizes translation stages to scan the freeform surface in XY plane and measure the slope data of various subapertures. The measured slope data is then integrated using weighted cubic spline (WCSLI) based integration method to compute the phase data. The positioning error during scanning causes misalignments between the measured subapertures and their nominal values. The least square based subaperture stitching methods are not capable to minimize lateral misalignment errors of freeform subapertures and therefore degrade the performance of subaperture stitching process. In this work, we have utilized fiducial added planes for correction of angular and rotation misalignments of an extended cubic phase plate. An intrinsic surface feature (ISF) based registration method is used for lateral misalignment corrections. Gaussian curvature is used as an intrinsic pattern which can be defined as one of the fundamental second order geometric properties of a surface. Any shift in the peaks of the Gaussian curvature of reference and measured subaperture corresponds to lateral misalignments in X and Y directions and need to be minimized before registration of subaperture into global frame of reference. After precise registrations, all the subapertures are stitched with consistent overlapping area by using least square fitting method. A numerical validation of the proposed scheme is carried out which demonstrates the effectiveness of the proposed method to improve the subaperture stitching accuracy.
The freeform optical surfaces are the advanced optical elements being used in the optical systems ranging from the illumination system, head up display and ophthalmic systems. So far the metrology is not well established for freeform surfaces.There are interferometric, profilometry, deflectometry and slope measurement techniques used to measure the freeform surfaces. Due to non-rotationally symmetric nature of freeform surfaces, slope measurement systems like Shack Hartman Sensors (SHS) are being explored for the measurement of freeform wavefronts. The spatial resolution of Shack Hartmann sensor is limited by the size of the lens lets used in the sensor which is typically 100 μm to 200 μm. The self-imaging based sensing uses a periodic structure which can be replicated under collimated illumination at certain distance known as Talbot distance. If there is a wavefront other than collimated light, the deviation in self-imaging pattern is observed, and this deviation can be utilised for wavefront measurements. Being a smaller pitch of the periodic structure, a high resolution data is obtained. In the present study, we have proposed a high resolution system for measurement of freeform surface using self-imaging based technique, which is having advantage of higher spatial data as compared to Shack Hartman Sensor. A simulation study is carried out and demonstrated the improved performance of the proposed sensor as compared to SHS.
We report design, fabrication and characterization of molded chalcogenide microlens array for Infrared sensing applications. A master of desired microlens array with high sag value is prepared using ultraviolet lithography and thermal reflow method on a positive photoresist (ma–P1275HV). The negative replica of the master is created using polydimethylsiloxane which serves as a mold for micro-molding. Further, chalcogenide solution is prepared in ethanolamine solvent and spin coated on a substrate to get a uniform film; these films are characterized and are found to have the same optical properties as the parent bulk chalcogenide glass. Finally, the microlens array is fabricated by the micro-molding of chalcogenide film. Fabricated chalcogenide microlenses are characterized for geometrical parameters, which are used to estimate the optical parameters.
Significant advances have been made in the field of fabrication of optical components over the years. While plano and
spherical surfaces are polished mostly by full aperture polishers made of pitch or polyurethane pads, no such approach is
possible for aspheric surfaces as polisher needs to conform to the changing local curvature of aspheric surface. For such
aspheric and freeform surfaces sub aperture polishing is a very attractive option as it forms a small polishing spot over
the surface of the optics and the path of this spot in multi axis configuration is precisely controlled by the computer. This
polishing process follows a deterministic approach and material removal information is very much necessary to control
surface form or surface accuracy of the optical component. Here we have carried out the polishing of several glass
substrates to find out the response of various glass types to this polishing process.
The fabrication of complex aspheric and freeform surfaces are possible with accurate iterative metrology feedback
during correcting polishing process. The tool path of the machine is generated based on the measured surface data
for corrective material removal. The computer controlled polishing machines are compatible with various metrology
tools. This paper presents annular null based interferometric in- process metrology for deterministic corrective
polishing for aspheric surface of infrared optical material.
A method is presented to measure refractive index of a plane parallel plate of optical glass. We have applied focal
displacement method to measure refractive index of a plane parallel plate of an optical glass having thickness of the
order of millimeters. The best focus position is found by applying edge detection algorithm. We have measured LAF2
optical glass using focal displacement method and obtained the value 1.746, which is within 0.1% of the standard value
1.747 at 555 nm. In comparison to Abbe refractometer, this method is simple in terms of sample preparation,
experimental set up and for measuring high refractive index of Zinc Sulfide. Using this method, refractive indices of
other optical glasses are also measured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.