On product overlay (OPO) challenges are quickly becoming yield limiters for the latest technology nodes, requiring new and innovative metrology solutions. In this paper we will cover current and future overlay trends in logic and memory device processing. We will review new lithography overlay challenges and node-after-node trends in the OPO error budget for advanced logic, DRAM, and 3D NAND devices. The central question of this paper is whether optical overlay metrology can keep up with challenges that include accuracy, intra-field variability, target-to-device offset, and others. After surveying the two dominant technologies in optical overlay metrology (IBO and SCOL®), we will outline innovative solutions that will help to address metrology challenges for the new device nodes.
The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.
We report on highly efficient diode-pumped solid-state (DPSS) green laser source based on a monolithic cavity
microchip laser platform. The use of periodically poled MgO-doped Lithium Niobate (PPMgOLN) as the nonlinear
frequency doubler together with gain material Nd3+:YVO4 allows obtaining a significant increase in the overall
efficiency of green microchip laser in comparison with other compact green laser source architectures with comparable
output power. We discuss our progress in miniaturization and efficient operation across a wide range of temperatures
and application-specific modulation conditions. In particular, we demonstrate 50mW-120mW average green output
power (30% duty cycle) with wall-plug efficiency over 13%. Efficient laser operation with duty cycle ranging from 10%
to 60% in a wide range of repetition rates is also demonstrated. The laser is designed to be a part of the miniature and
efficient RGB light source for microdisplay-based (LCOS, DLP or similar) mobile projector devices. While these
projection architectures typically require modulation rates from 60Hz to about 2000Hz depending on design, we
extended modulation speed up to 2MHz that can be of interest for other applications. A very efficient and small
microchip as well as alignment-free design allow us to package this laser source into the very small volume of only
0.23cm3 (bounding box). We present results of performance tests for this packaged laser and demonstrate that such a
miniature package can support laser operation with average power output of over 250mW.
Recent developments in compact projectors sparked interest in light sources for these applications. While RGB lasers
offer advantages, a viable green laser platform has been difficult to realize. In this work, we demonstrate a novel green
laser source, based on a monolithic cavity microchip laser platform. The use of highly efficient, periodically poled MgOdoped
Lithium Niobate (PPMgOLN) as the nonlinear frequency doubler allows obtaining a significant increase in the
overall efficiency of the green microchip laser. Specifically, we demonstrate 50-150mW green output with wall-plug
efficiency exceeding 10% in the temperature range over 40°C. We discuss a compact package for this laser source with
volume less than 0.4cm3.
Laser-based projection displays have long attracted interest because of the multiple advantages (expanded color gamut, high resolution, longer lifetime, etc.) expected from lasers as compared to lamps. However, most of these advantages have been largely negated by the significant cost, size, and cooling requirements associated with lasers, and their inability to produce red, green, and blue colors in the same platform. In this paper, we review a new, laser array
technology based of frequency-doubled, semiconductor, surface-emitting lasers. The key features of this technology, such as demonstrated multi-Watt output for rear-projection TVs, power levels scalable with the number of emitters, speckle suppression due to multi-emitter array, and a low-cost and compact design are discussed in detail.
Compact and efficient blue-green lasers have been receiving increasing interest in the last few years due to their applications in various industries: bio-instrumentation, reprographics, microscopy, etc. We report on the latest developments in frequency-doubled, compact blue-green lasers, based on Novalux extended-cavity surface emitting laser (NECSEL) technology. This discussion will touch upon using NECSEL technology to go beyond a 5-20 milliwatt cw laser design for instrumentation applications and obtain a compact design that is scalable to higher power levels in an array-based architecture. Such a blue-green laser array platform can address the needs of laser light sources in the projection display consumer electronics markets, particularly in rear-projection televisions.
We introduce a novel type of cw green laser source, the Protera 532, based on the intracavity frequency doubling of an extended-cavity, surface-emitting diode laser. The distinguishing characteristics of this platform are high compactness and efficiency in a stable, single-longitudinal mode with beam quality M2 < 1.2. The laser design is based on the previously reported NECSEL architecture used for 488nm lasers, and includes several novel features to accommodate different types of nonlinear optical materials. The infrared laser die wavelength is increased from 976nm to 1064nm without compromising performance or reliability. The intracavity frequency doubling to 532nm has been demonstrated with both bulk and periodically poled nonlinear materials, with single-ended cw power outputs of greater than 30 mW.
Laser sources emitting at 460nm have been developed through intracavity doubling of an extended cavity, surface emitting semiconductor laser. These lasers are compact, spectrally pure, efficient, and have a high quality beam. The basic design is similar to previously reported work[1] at 488nm using Novalux Extended Cavity Surface Emitting Laser (NECSEL) structures. The choice of nonlinear material was found to be critical, with periodically poled materials providing distinct benefits over bulk materials. Output powers exceeded 20mW. The reliability of the completed lasers was found to be excellent.
We describe the properties of novel blue-green sources based on intracavity frequency doubling of the Novalux family of high-brightness infrared surface-emitting lasers. They are highly compact, efficient, reliable, stable and manufacturable, capable of emitting over 40-mW cw power at 488 nm and other custom wavelengths in the range 460-532 nm with single frequency and single-spatial mode.
We describe the design, fabrication and performance of novel, electrically pumped, vertical compound cavity 976nm InGaAs lasers that emit at 488nm via intracavity second harmonic generation. The resulting light source is an ideal replacement for Ar-ion lasers used in a wide variety of bio-analytical instruments. We present characterization data for the laser to demonstrate its capabilities. Lastly, future directions for the technology are discussed, including a monolithic form and devices operating at 460 and 532nm.
We describe design and performance of novel, electrically pumped, vertical compound cavity semiconductor lasers emitting at 980 nm. The laser combines a vertical cavity semiconductor laser with a partially reflecting output coupler and an external cavity for mode control. The concept is scalable and has been demonstrated in monolithic low power (few miliwatts) devices all the way to high power extended cavity devices which generate over 950 mW CW multimode power and 0.5 W CW power in a TEM00 mode, the latter with 90% coupling efficiency into a single mode telecommunication fiber. The concept has been applied to the development of uncooled lasers, mounted in TO-56 cans, capable of producing 50 to 100 mW of fiber-coupled power. We have also demonstrated the extended cavity lasers at wavelengths of 920 nm and 1064 nm. We present reliability data for the chips used in the extended cavity lasers.
We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power (~10 mW) devices all the way to high power extended cavity lasers. The latter have demonstrated ~1 W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise (0.05% rms from dc-2 MHz), sub 10 mrad beam pointing stability combined with small size, low power consumption (<10 W) and high efficiency.
We describe a novel blue-green laser platform, based on the intracavity frequency doubling of Novalux Extended Cavity Surface Emitting Lasers. We have demonstrated 5 to 40mW of single-ended, 488nm, single-longitudinal mode emission with beam quality M2<1.2. The optical quality of these lasers matches that of gas lasers; their compactness and efficiency exceed ion, DPSS, and OPSL platforms. These unique properties are designed to serve diverse instrumentation markets such as bio-medical, semiconductor inspection, reprographics, imaging, etc., and to enable new applications. We also present data on the reliability of this novel laser platform and its extensions to different wavelengths (in particular, 460nm and 532nm) and to next-generation, highly compact, monolithic intracavity-doubled lasers.
We have developed novel electrically pumped, surface-emitting lasers emitting at 980 nm with an extended coupled cavity. The concept is scalable from monolithic low power devices all the way to high power extended cavity lasers. The latter have demonstrated 1W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. By inserting a nonlinear optical medium in the external cavity, efficient and compact frequency doubling has been achieved with CW output powers 5-40 mW demonstrated at 490 nm. The latter devices are especially noteworthy due to their very low noise, sub 10 μrad beam pointing stability combined with small size, low power consumption and high efficiency.
We describe design, fabrication and performance of novel, electrically pumped, vertical compound cavity InGaAs lasers emitting at 980 and 920 nm. The concept is scalable and has been demonstrated using monolithic low power (~10 mW) devices all the way to high power extended cavity devices which have demonstrated 1 W cw multi-mode and 0.5 W cw in a TEM00 mode and a single frequency, with 90% coupling efficiency into a single-mode fiber. We also describe uncooled vertical compound cavity lasers in TO-56 can packages which produce 50-100 mW of fiber coupled power. Finally, recent developments in intracavity frequency doubling are summarized.
We describe exact representations for partially coherent beams whose spectral degree of coherence remains invariant on propagation. Such beams are obtained by taking a random superposition of well-known coherent Bessel beams, each of which propagates without spreading in the transverse direction. The invariance in coherent properties for such partially coherent beams holds for propagation distances as large as the propagation distances of coherent Bessel beams.
We investigate theoretically changes in the spectrum of light scattered from a system with a random surface (the Wolf effect). The system we consider is the Otto attenuated total reflection configuration that is widely used to couple the incident light to surface polaritons. The angular dependence of the intensity of the light scattered incoherently from this system exhibits sharp, intense peaks at the angles of optimum excitation/radiation of the surface polaritons supported by it. In the vicinity of each of these resonance angles the spectrum of the scattered light is red-shifted for scattering angles larger than this angle, and is blue-shifted for scattering angles smaller than this angle. The magnitude of the shift is three to four orders of magnitude larger than that predicted for disordered volume media. We conclude that the Otto attenuated total reflection configuration is another example of bounded systems with random surfaces which are more attractive subjects for experimental studies of the Wolf effect than systems with a single random surface or disordered volume systems.
The enhanced backscattering of light from randomly rough metal surfaces, which manifests itself as a well-defined peak in the retroreflection direction in the angular distribution of the intensity of the light scattered incoherently has attracted a great deal of attention recently. The backscattering phenomenon is attributed to the coherent interference of multiply-scattered surface plasmon polaritons excited on a metal surface with their time-reversed partners. The coherent interference of multiply-scattered lateral waves excited in the scattering of light from strongly rough dielectric surfaces is known to lead to an enhanced backscattering peak in the angular distribution of the intensity of s-polarized light scattered from them. In this paper we present an analytical theory of the scattering of light from a one- dimensional randomly rough interface between two media. One of the media is a dipole-active medium that is characterized by a frequency-dependent dielectric function, that is negative in a restricted frequency range, while the other is characterized by a frequency-independent, real, positive dielectric constant. We assume that the interface profile function is a single-valued function of the coordinate in the mean plate of the interface that is normal to its grooves and ridges, and constitutes a zero-mean, stationary, Gaussian random process. We assume that either p- or s-polarized electromagnetic waves are incident on the interface from the medium whose dielectric constant is frequency-independent. We study the angular distribution of the light that has been scattered incoherently as a function of the frequency of the incident light. The evolution of the enhanced backscattering peak in the case of p-polarized incident light as the frequency of the incident light is tuned through the frequencies of the dipole-active excitations in the medium whose dielectric function is frequency-dependent, is studied. Different mechanisms for the formation of the enhanced backscattering peak in different frequency regions are discussed.
We study theoretically the scattering of a beam of s-polarized light from a one-dimensional random metal surface with a localized deterministic defect. We carry out numerical calculations of the far field intensity, using a formally exact technique based on Green's second integral identity and statistical ensemble averaging. Our results obtained for very rough surfaces show that the backscattering peak in the differential reflection coefficient for the scattered light almost does not change for small angles of incidence. However, for larger angles it undergoes significant enhancement due to the presence of the defect, which phenomenon we attribute to a form of the corner cube effect. We also consider how the presence of a deterministic defect changes the behavior of the angular intensity correlation function for the scattered light. We are primarily interested in the changes of the memory effect and the time-reversed memory effect peaks. We show that the defect can enhance or suppress these peaks depending on the relative positions of the light sources and the points of observation. The explanation of these results is again associated with the corner cube effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.