A diffusive model with a price dependent diffusion coefficient was recently proposed to explain the occurrence of non-Gaussian price return distributions observed empirically in real markets
[J.L. McCauley and G.H. Gunaratne, Physica A 329, 178 (2003)].
Depending on the functional form of the diffusion coefficient, the exactly solved continuum limit of the model can produce either an exponential distribution, or a "fat-tailed" power-law distribution of returns. Real markets, however, are discrete, and, in this paper, the effects of discreteness on the model are explored. Discrete distributions from simulations and from numerically exact calculations are presented and compared to the corresponding distributions of the continuum model. A type of phase transition is discovered in discrete models that lead to fat-tailed distributions in the continuum limit, sheading light on the nature of such distributions. The transition is to a phase in which infinite price changes can occur in finite time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.