We fabricated and reported a pedestal fiber with Yb/Ce-codoped aluminosilicate (Al2O3-SiO2) core and germanosilicate (GeO2-SiO2) pedestal. This newly-optimized chelate precursor doping technique enables us to make homogeneous large-core pedestal fiber with strong pump absorption from Yb3+ ions about 3.66dB/m at 915nm. The fiber core was homogeneously doped with 4450ppm Yb3+, 11600ppm Al3+ and 1800ppm Ce3+, and surrounded by pedestal layers with 25000ppm Ge4+. The results indicate all-gas-phase chelate precursor doping technique is highly competitive for the fabrication of pedestal fiber towards narrow-linewidth fiber laser.
Based on a master oscillator power amplifier configuration, laser performance of commercial Nufern-20/400-8M Ybdoped aluminophosphosilicate ternary laser fiber was investigated. Pumped by 976 nm laser diodes, 982 W laser output power was obtained with a slope efficiency of 84.9%. Spectrum of output was centered at 1066.56nm with 3dB bandwidth less than 0.32 nm, and the nonlinearity suppression ratio was more than 39dB. Beam quality of Mx2 and M2y were 1.55 and 1.75 at 982 W, respectively. The laser performance indicated that Nufern-20/400-8M Yb-doped aluminophosphosilicate ternary laser fiber is highly competitive for industry fiber laser use.
To investigate the laser performance of Ce/ Yb-codoped aluminosilicate (Al2O3-SiO2) binary glass fiber, we took commercial Nufern-20/400-9M fiber as a research object. 0.95 kW laser output power at 1066 nm with an optical-to-optical efficiency of 83.3% was achieved at fiber laser amplifier stage. Beam quality of Mx2 and My2 is 1.56 and 1.68 at 0.95 kW, respectively. The results indicate Nufern-20/400-9M fiber may be suitable
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it’s exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
An instantaneous three-dimensional imaging technique using a chirped supercontinuum and an ultrafast optical Kerr gate, in which a sapphire plate and a TeO2-ZnO-Na2O oxide glass were used to generate the chirped supercontinuum and the ultrafast optical Kerr gate, respectively, is demonstrated. This technique is applicable to ultrafast shape measurement, such as shape imaging of moving objects, or imaging of laser-induced refractive index changes in transparent media.
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.