A definition doubler is an optical device, which can increase both the resolution and the fill of discrete fixed pixel displays, such as flat panel LCDs. These devices can operate in either 1 or 2 axis. They can be either passive or active in operation. The construction and operation of definition doublers are described.
A microwave radiometer relies on the power linearity of its microwave receivers to accurately measure the temperature of remote microwave noise sources. This paper considers linearity issues in the design and characterization of such receivers. Analysis is presented relating the radiometer temperature interpolation error to a second order power nonlinearity coefficient for the receiver. Formulas are also developed specifying the temperature error in terms of individual receiver component parameters. It is shown that the key parameter for the RF detector in the receiver is A4, a fourth order RF distortion coefficient, and the key parameter for the RF amplifiers in the receiver is IP3, the third order intercept. This paper also discusses experimental methods for measuring the power linearity of RF detectors to the levels required for radiometric applications. Three methods are discussed: the two-tone method, the amplitude modulation method, and the constant ratio method. The theory of determining the coefficients that characterize the nonlinearity of the detector from experimental data is presented. Experimental results are presented showing that the two-tone method and the constant ratio method agree to within experimental error. The sensitivity for measuring nonlinearities and the difficulties encountered in implementing each of these methods are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.