We demonstrate a combination of polarization-resolved with fluorescence optical scanning microscopy that offers polarizing based information along with molecular view of sample as a versatile tool for imaging the chromatin organization.
A new setup was recently proposed to perform Mueller matrix polarimetry at 100 kHz using a swept laser source, high order retarders and a single channel photodetector. In this communication, we present the implementation of this setup on a laser scanning microscope to perform high speed scanning Mueller microscopy in transmission. Calibration of the instrument is briefly described and precision and stability over time are evaluated. Finally, Mueller images of a manufactured scene are reported. To our best knowledge, this is the first time that Mueller polarimetry is performed using a laser scanning microscope. We further plan to develop confocal/nonlinear/Mueller microscopy from the same setup in order to produce multimodal contrast images of biological samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.