We report a simple and compact all-solid-state laser generating 488 nm light with continuously variable output power in the range from 1 mW to over 120 mW. We frequency double single frequency radiation from an external cavity semiconductor laser in a periodically poled MgO:LiNbO3 ridge waveguide. The laser maintains a high quality TEM00 circular beam with M2 < 1.1 and very low r.m.s. noise of less than 0.06% over the entire range of output power. Less than 0.1% peak-to-peak output power variation was measured during 14 hours of operation. No degradation of the conversion efficiency has been observed for operation at an output power of 70 mW for 3.5 months. The prototype laser has a small footprint of 5x8 cm.
Cavity ring-down spectroscopy (CRDS) can provide high sensitivity, high precision, and absolute calibration in a wide range of environments. We report on a compact cavity ring-down spectrometer that can measure atmospheric toxic industrial compounds such as hydrides and hydrazines. The ring-down spectrometer is fully contained in two 5 ¼" tall, 19" wide rack mount enclosures and utilizes a robust, near-infrared, fiber-coupled tunable diode laser. The instrument has a baseline sensitivity of 8 x 10-11 cm-1/Hz½. We will present the results of this study, which demonstrates the capability to detect toxic gases such as arsine, silane, and hydrazine (simulated using ammonia) in air at parts per billion (ppb) concentrations in less than 1 minute. We will also present results on CRDS instrument performance, including zero drift, precision, absolute accuracy, and linearity over a wide range of environmental operating conditions.
We report on robustness testing of a highly reliable frequency-doubled, external cavity semiconductor laser (DECSL). The laser module has been demonstrated to survive 6G operating vibration swept from 100 Hz to 500 Hz at 0.25 octaves/min. Impact shock to destruction was performed, and the unit passed operating specifications up to 300G. Good pointing stability and laser start times are shown as a function of repeated environmental temperature cycling between operating extremes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.