While time resolved astronomical observations are not new, the extension of such studies to sub-second time resolution
is and has resulted in the opening of a new observational frontier, High Time Resolution Astronomy (HTRA). HTRA
studies are well suited to objects like compact binary stars (CVs and X-ray binaries) and pulsars, while asteroseismology
of pulsating stars, occultations, transits and the study of transients, will all benefit from such HTRA studies.
HTRA has been a SALT science driver from the outset and the first-light instruments, namely the UV-VIS imager,
SALTICAM, and the multi-purpose Robert Stobie Spectrograph (RSS), both have high time resolution modes. These are
described, together with some observational examples. We also discuss the commissioning observations with the photon
counting Berkeley Visible Image Tube camera (BVIT) on SALT. Finally we describe the software tools, developed in
Python, to reduce SALT time resolved observations.
KEYWORDS: Galactic astronomy, Camera shutters, Stars, Sensors, Photons, Telescopes, Near ultraviolet, Ionization, Spectroscopy, James Webb Space Telescope
We explore the design of a space mission called Project Lyman that has the goal of quantifying the ionization history of the universe from the present epoch to a redshift of z ~ 3. Observations from WMAP and SDSS show that before a redshift of z (Symbol not available. See manuscript.) 6 the first collapsed objects, possibly dwarf galaxies, emitted Lyman continuum (LyC) radiation shortward of 912 Å that reionized most of the universe. Theoretical estimates of the LyC escape fraction ( fesc ) required from these objects to complete reionization is fesc ~10%. How LyC escapes from galactic environments, whether it induces positive or negative feedback on the local and global collapse of structures, and the role played by clumping, molecules, metallicity and dust are major unanswered theoretical questions, requiring observational constraint. Numerous intervening Lyman limit systems frustrate the detection of LyC from high z objects. They thin below z ~ 3 where there are reportedly a few cases of apparently very high fesc. At low z there are only controversial detections and a handful of upper limits. A wide-field multi-object spectroscopic survey with moderate spectral and spatial resolution can quantify fesc within diverse spatially resolved galactic environments over redshifts with significant evolution in galaxy assemblage and quasar activity. It can also calibrate LyC escape against Lyα escape, providing an essential tool to JWST for probing the beginnings of reionization. We present calculations showing the evolution of the characteristic apparent magnitude of star-forming galaxy luminosity functions at 900 Å, as a function of redshift and assumed escape fraction. These calculations allow us to determine the required aperture for detecting LyC and conduct trade studies to guide technology choices and balance science return against mission cost. Finally we review our efforts to build a pathfinding dual order multi-object spectro/telescope with a (0.5°)2 field-of-view, using a GSFC microshutter array, and crossed delay-line micro-channel plate detector.
The unique ability to record photon X,Y,T high fidelity information has advantages for high speed recording devices for some important time dependent applications. For microchannel plate sensors our most commonly used readout configuration is the cross delay line anode. We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (>2.5k x 2.5k resolution elements) with excellent linearity for random photon rates of > 500 kHz, while time tagging events using the MCP output signal to better than 100 ps. Open face and sealed tube microchannel plate cross delay line detectors of this kind have been built and used for observation of flare stars, orbital satellites and space debris with the GALEX satellite, time resolved imaging of the Crab Pulsar with a telescope as small as 1m, biological fluorescence imaging and synchrotron diagnostics. To achieve better efficiency, higher counting rate and extended lifetime we are now developing cross strip anode readouts. These have already demonstrated 5μm resolution at <10x lower gain than the cross delay line schemes, and high speed electronics for the cross strip are currently in development.
We present laboratory measurements of the reduction in UV-to-visible/IR reflectivity (1200Å - 10,000Å) of optical surfaces due to 50Å - 500Å deposited layers of out-gassed molecular contaminants from 9 commonly used spacecraft/space instrument materials that include Apiezon-L hi-vacuum grease, Braycote-601EF lubricant, DC 704 silicon oil, EPOM rubber clad wire, PVC clad wire, Scotchweld 2216 epoxy, Uralane 5753 staking compound, Tefzel cable tie and Aeroglaze Z306 black paint on Kapton. Our results are compared with predictions from theoretical models currently being widely used throughout the space industry. Good agreement is found at UV wavelengths, but large differences occur at visible wavelengths. This latter effect is due to the application of Beer's Law, which ignores the non-negligible effect of reflectance scattering from the thin film of the contaminant.
We describe the Galaxy Evolution Explorer (GALEX) satellite that was launched in April 2003 specifically to accomplish far ultraviolet (FUV) and near ultraviolet (NUV) imaging and spectroscopic sky-surveys. GALEX is currently providing new and significant information on how galaxies form and evolve over a period that encompasses 80% of the history of the Universe. This is being accomplished by the precise measurement of the UV brightness of galaxies which is a direct measurement of their rate of star formation. We briefly describe the design of the GALEX mission followed by an overview of the instrumentation that comprises the science payload. We then focus on a description of the development of the UV sealed tube micro-channel plate detectors and provide data that describe their on-orbit performance. Finally, we provide a short overview of some of the science highlights obtained with GALEX.
APEX is a proposed mission for a Small Explorer (SMEX) satellite. APEX will investigate the density, temperature, composition, magnetic field, structure, and dynamics of hot astrophysical plasmas (log T = ~5-7), which emit the bulk of their radiation at EUV wavelengths and produce critical spectral diagnostics not found at other wavelengths. APEX addresses basic questions of stellar evolution and galactic structure through high-resolution spectroscopy of white dwarf stars, cataclysmic variables, the local interstellar medium, and stellar coronae. Thus APEX complements the Chandra, Newton-XMM, FUSE, and CHIPS missions. The instrument is a suite of 8 near-normal incidence spectrometers (~90-275 Angstroms, resolving power ~10,000, effective area 30-50 cm2) each of which employs a multilayer-coated ion-etched blazed diffraction grating and a microchannel plate detector of high quantum efficiency and high spatial resolution. The instrument is mounted on a 3-axis stabilized commercial spacecraft bus with a precision pointing system. The spacecraft is launched by a Taurus vehicle, and payload size and weight fit comfortably within limits for the 2210 fairing. Of order 100 targets will be observed over the baseline mission of 2 years. These are selected carefully to maximize scientific return, and all were detected in the EUVE and the ROSAT WFC surveys.
Silicon Charge-Coupled Devices (CCDs) are the ubiquitous detector of choice for most ground based optical cameras given their high QE, low readout noise, good spatial resolution and large array size. However, they are integrating detectors, and as such have a limited temporal resolution determined by the readout frame rate. Imaging photon counters, on the other hand, can determine the location and arrival time of an individual detected photon which lends itself to studies of the intrinsic variability of astronomical sources. This topic is of fundamental importance, especially for the case of compact objects in stellar binary systems, stellar flares, and accretion disk phenomena. Most of these timing observations are currently performed by satellite-born X-ray instruments, but similar data can also be obtained from ground-based observatories at visible wavelengths using photon counting detectors. In this paper we review the recent and future improvements in the performance of imaging, photon counters, especially their optical QE, array size, spatial and temporal resolution and dark counting rates. We will compare them to conventional CCD devices and discuss the observational applications for which either or both can excel. We find that for certain applications (such as high time resolution observations, faint spectra and wavefront sensors for adaptive optics) imaging photon counting detectors can provide observations of superior signal-to-noise to CCD's.
Christopher Martin, Thomas Barlow, William Barnhart, Luciana Bianchi, Brian Blakkolb, Dominique Bruno, Joseph Bushman, Yong-Ik Byun, Michael Chiville, Timothy Conrow, Brian Cooke, Jose Donas, James Fanson, Karl Forster, Peter Friedman, Robert Grange, David Griffiths, Timothy Heckman, James Lee, Patrick Jelinsky, Sug-Whan Kim, Siu-Chun Lee, Young-Wook Lee, Dankai Liu, Barry Madore, Roger Malina, Alan Mazer, Ryan McLean, Bruno Milliard, William Mitchell, Marco Morais, Patrick Morrissey, Susan Neff, Frederic Raison, David Randall, Michael Rich, David Schiminovich, Wes Schmitigal, Amit Sen, Oswald Siegmund, Todd Small, Joseph Stock, Frank Surber, Alexander Szalay, Arthur Vaughan, Timothy Weigand, Barry Welsh, Patrick Wu, Ted Wyder, C. Kevin Xu, Jennifer Zsoldas
The Galaxy Evolution Explorer (GALEX), a NASA Small Explorer Mission planned for launch in Fall 2002, will perform the first Space Ultraviolet sky survey. Five imaging surveys in each of two bands (1350-1750Å and 1750-2800Å) will range from an all-sky survey (limit mAB~20-21) to an ultra-deep survey of 4 square degrees (limit mAB~26). Three spectroscopic grism surveys (R=100-300) will be performed with various depths (mAB~20-25) and sky coverage (100 to 2 square degrees) over the 1350-2800Å band. The instrument includes a 50 cm modified Ritchey-Chrétien telescope, a dichroic beam splitter and astigmatism corrector, two large sealed tube microchannel plate detectors to simultaneously cover the two bands and the 1.2 degree field of view. A rotating wheel provides either imaging or grism spectroscopy with transmitting optics. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the UV-global star formation rate relationship in galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the red shift range zero to two. The GALEX mission will include an Associate Investigator program for additional observations and supporting data analysis. This will support a wide variety of investigations made possible by the first UV sky survey.
The evolution of hot interstellar medium (ISM) in galaxies is fundamental to the evolution of our cosmos. The Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR) mission will study the hot ISM, providing pointed observations and the first all-sky spectral maps in the Far (FUV) Ultraviolet. The FUV bandpass contains the primary cooling lines of abundant elements in a variety of ionization states. SPEAR's broad bandpass (λλ 900 - 1750 Å), spectral resolution (λ/δλ ~ 700) and imaging resolution (5' - 10') has been chosen to determine independently the quantity, temperature, depletion, and ionization of hot galactic gas. These SPEAR data will allow us to study the hot ISM on both large and small scales and to discriminate among models of the large-scale creation, distribution, and evolution of hot gas in the Galactic disk and halo.
KEYWORDS: Sensors, Digital signal processing, Control systems, Camera shutters, Electronics, Sun, Spectral resolution, Microchannel plates, Mirrors, Spectrographs
The SPEAR micro-satellite payload consists of dual imaging spectrographs optimized for detection of the faint, diffuse FUV (900-1750 Å) radiation emitted from interstellar gas. The instrument provides spectral resolution, R~750, and long slit imaging of <10' over a large (8°x5') field of view. We enhance the sensitivity by using shutters and filters for removal of background noise. Each spectrograph channel uses identically figured optics: a parabolic-cylinder entrance mirror and a constant-ruled ellipsoidal grating. Two microchannel plate photon-counting detectors share a single delay-line encoding system. A payload electronics system conditions data and controls the instrument. We will describe the design and predicted performance of the SPEAR instrument system and its elements.
We describe the Lyman Imaging Telescope Experiment (LITE) which is a NASA Ultraviolet Astrophysics Branch supported Advanced Mission Concept mission. The prime scientific aim of the LITE mission will be to carry out the first set of very high spatial resolution (0.2 arc sec), wide field of view (10 arc minute), pointed observations in several narrow wavelength bands in the far ultraviolet region of the spectrum (900 - 1600 angstroms). LITE will possess excellent detection sensitivity, such that limiting magnitudes for typical images are expected to be close to that of the HST WFPC II instrument. The proposed far ultraviolet astrophysical studies will encompass the emission of diffuse gas with temperatures in the range 80,000 - 1,000,000 K.
The microchannel plates for the detectors in the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCPs) is employed in a detector format of 27 mm multiplied by 10 mm using a multilayer cross delay line anode (XDL) with 1024 by 360 digitized pixels. The MCP stacks provide gains of greater than 2 multiplied by 107 with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approximately equals 0.6 event cm-2 sec-1 are obtained for this configuration. Local counting rates up to approximately equals 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (approximately equals 10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.
We describe a mission concept for the SEQUOIA instrument, which would carry out the first wide-field, far ultraviolet, photometric all-sky survey. SEQUOIA will image the astronomical sky in the 912-1050 angstrom spectral region to a limiting magnitude of 19.5m over a one degree field of view with a spatial resolution of less than 30 arc seconds. This mission was proposed to the USRA STEDI program in late 1994, and has been designed as a low cost, fast-track program for launch within 3 years. The spacecraft bus is being provided by Orbital Sciences Corporation (Dulles) and since the entire payload weighs less than 100kg, it can be launched using either a Minuteman or Pegasus rocket.
We present the design, characterization, and flight performance of a sounding rocket instrument developed to address unanswered scientific questions regarding the extreme ultraviolet emissions of the star (epsilon) Canis Majoris (Adhara). The payload consists of an off axis parabolic telescope feeding a standard Rowland circle spectrograph and provides between 2 and 4 cm2 of effective area at the short and long wavelength ends of the bandpass, repectively. The spectrograph has a resolution of approximately 800 and covers the wavelength range 600 - 919 angstrom. In this paper we discuss specifics of the optical and mechanical design and present results from the initial calibration. The payload is presently scheduled for launch from Woomera, Australia, in the fall of 1995.
Microchannel plate based detectors with cross delay line image readout have been rapidly implemented for the SUMER and UVCS instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in July 1995. In October 1993 a fast track program to build and characterize detectors and detector control electronics was initiated. We present the detector system design for the SOHO UVCS and SUMER detector programs, and results from the detector test program. Two deliverable detectors have been built at this point, a demonstration model for UVCS, and the flight Ly (alpha) detector for UVCS, both of which are to be delivered in the next few weeks. Test results have also been obtained with one other demonstration detector system. The detector format is 26mm x 9mm, with 1024 x 360 digitized pixels,using a low resistance Z stack of microchannel plates (MCP's) and a multilayer cross delay line anode (XDL). This configuration provides gains of approximately equals 2 X 107 with good pulse height distributions (<50% FWHM) under uniform flood illumination, and background levels typical for this configuration (approximately equals 0.6 event cm-2 sec-1). Local counting rates up to approximately equals 400 event/pixel/sec have been achieved with no degradation of the MCP gain. The detector and event encoding electronics achieves approximately equals 25 micrometers FWHM with good linearity (+/- approximately equals 1 pixel) and is stable to high global counting rates (>4 X 105 events sec-1). Flat field images are dominated by MCP fixed pattern noise and are stable, but the MCP multifiber modulation usually expected is uncharacteristically absent. The detector and electronics have also successfully passed both thermal vacuum and vibration tests.
We review some of the mission concepts currently being considered by NASA's Astrophysics Division to carry out future observations in the 100 - 3000 angstroms region. Examples of possible future missions include UV & visible interferometric experiments, a next generation Space Telescope and lunar-based UV instrumentation. In order to match these science objectives of these future missions with new observational techniques, critical technology needs in the ultraviolet regime have been identified. Here we describe how NASA's Astrophysics Division Advanced Programs Branch is attempting to formulate an integrated technology plan called the 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century.
We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.
The paper describes the main features and selected results of the calibration of the scientific instruments to be flown on the Extreme Ultraviolet Explorer in 1991. The instrument payload includes three grazing incidence scanning telescopes and an EUV spectrometer/deep survey instrument covering the spectral region 70-800 A. The measured imaging characteristics, the effective areas, and the details of spectral responses of the instruments are presented. Diagrams of the cross-sectional views of the scanning telescope and the deep-survey/spectrometer telescope are included.
A stringent contamination control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments whose performance in the 80900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination control program has been implemented over the last three years during assembly test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. We discuss various approaches used during ground operations to meet optics'' contamination goals within the project schedule and budget. We also present the measured optical properties of EUV witness mirrors which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high vacuum test chamber environments. 1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.