We investigate the performance of two different all-optical wavelength conversion configurations: four-wave mixing in
highly nonlinear fiber and cascaded second harmonic and difference frequency generation in periodically poled Lithium
Niobate. Both configurations have the capability to convert phase-modulated signals with high data rates. Error free
wavelength conversion of up to 160 Gbit/s DPSK and 320 Gbit/s DQPSK data signals is demonstrated. The converter
using highly non-linear fiber can have advantages in network applications in which cascaded wavelength conversion are
requested due to its potentially higher conversion efficiency and OSNR. The Lithium Niobate converter generates no
phase distortion by wavelength conversion of phase-modulated signals. This could be useful for applications utilizing
PSK formats with 2 bit per symbol or more, like DQPSK or 8-PSK.
We report on components and techniques for single wavelength channel transmission at data rates up to 2.56 Tbit/s. The enabling technologies were OTDM technology, phase modulation formats, and precise dispersion management of the fiber link.
In this paper the performance characteristics of compact optical 40 GHz pulse laser modules consisting of a monolithic mode-locked MQW DBR laser on GaInAsP/InP are reported. The monolithic devices were fabricated as tunable multi-section buried heterostructure lasers. A DBR grating is integrated at the output port of an extended cavity in order to meet the standardized ITU wavelength channels allocated in the spectral window around 1.55 μm in optical high speed communication networks. The fabricated 40 GHz lasers modules not only emit short optical pulses (< 1.5 ps) with very low amplitude noise (<1.5 %) and phase noise levels (timing jitter: 50 fs) but also enable good pulse-to-pulse phase and long-term stability. A wavelength tuning range of 6 nm is possible and large locking bandwidths between 100 ... 260 MHz are observed. All data have been achieved by operating the lasers in a hybrid mode-locking scheme with a required minimum micro-wave power of only 12 dBm for pulse synchronization. Details on laser chip architecture and module performance are summarized and the results of a stable and error free module performance in first 160 Gb/s (4 x 40 Gb/s OTDM) RZ-DPSK transmission experiments are presented.
Recent development trends in InP-based optoelectronic devices are illustrated by means of selected examples. These include lasers for uncooled operation and direct modulation at 10 Gbit/s, complex-coupled lasers, which exhibit particularly low sensitivity to back reflections as well as monolithic mode-locked semiconductor lasers as ps-pulse sources for OTDM applications. Furthermore, a Mach-Zehnder interferometer modulator for high bit rate applications (40 Gbit/s and beyond) is described, and finally, photoreceivers and ultra high-speed waveguide-integrated photodiodes with > 100 GHz bandwidth are presented, which are key component for high bit rate systems, advanced modulation format transmission links, and for high speed measurement equipment as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.