Atmospheric retrieval studies are essential to determine the science requirements for future generation missions, such as the Large Interferometer for Exoplanets (LIFE). The use of heterogeneous absorption cross-sections might be the cause of systematic effects in retrievals, which could bias a correct characterization of the atmosphere. In this contribution we quantified the impact of differences in line list provenance, broadening coefficients, and line wing cut-offs in the retrieval of an Earth twin exoplanet orbiting a Sun-like star at 10 pc from the observer, as it would be observed with LIFE. We ran four different retrievals on the same input spectrum, by varying the opacity tables that the Bayesian retrieval framework was allowed to use. We found that the systematics introduced by the opacity tables could bias the correct estimation of the atmospheric pressure at the surface level, as well as an accurate retrieval of the abundance of some species in the atmosphere (such as CO2 and N2O). We argue that differences in the line wing cut-off might be the major source of errors. We highlight the need for more laboratory and modeling efforts, as well as inter-model comparisons of the main radiative transfer models and Bayesian retrieval frameworks. This is especially relevant in the context of LIFE and future generation missions, to identify issues and critical points for the community to jointly work together to prepare for the analysis of the upcoming observations.
We present results on the laboratory characterization of the grating vector apodizing phase plate (gvAPP) coronagraph that will be included in the upcoming instrument enhanced resolution imager and spectrograph (ERIS) at the VLT. ERIS will include a 1 to 5 μm adaptive-optics-fed imager, NIX, that will greatly improve the capability of the VLT to perform high-contrast imaging of exoplanets especially in the 3 to 5 μm wavelength range. The gvAPP, one of the coronagraphs in the NIX suite, is a pupil plane coronagraph that uses a thin film of patterned liquid crystals to create two images of a star with a D-shaped dark hole on either side. The gvAPP is manufactured using an innovative direct-write system that produces precise patterns of liquid crystals. We utilized the upgraded infrared cryogenic test bench run by the Exoplanets and Habitability Group at ETH Zurich to measure the morphology of the gvAPP PSF and to test the accuracy of the liquid crystal manufacturing technique in the lab for the first time at contrast levels of ∼10 − 5. We find that the gvAPP can reach raw contrasts below ∼10 − 5 between ∼10 and 13 λ / D. This contrast upper limit translates to a writing accuracy of the orientation of the liquid crystal’s fast axis of better than 0.3 deg for the spatial frequencies corresponding to those separations. This is a sufficient accuracy such that the gvAPP will not be the limiting factor in achieving the required contrasts to image exoplanets.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.