Modern mobile phone imaging sensors wide availability and high quality have enabled development of low-cost imaging and sensing approaches that utilize the camera, including those which detect diffuse optical interactions and produce quantitative transcutaneous measures analogous to clinical techniques for bilirubin and oxygenation sensing. Concurrently, recent clinical studies report overestimation bias from dark skinned patients in transcutaneous bilirubinometery (TcB) and pulse oximetry. Here, Monte Carlo simulations of TcB and oximetery were used to investigate the source of possible racial biases in clinical measurements. Simulations of device calibration studies with dark, mixed, and light skinned cohorts were tested against groups with similar and different racial distributions. Results implicate a combination of tissue optics and biased enrollment in calibration studies for systematic overestimation in both TcB and oximetry. Next, identical Monte Carlo simulations were performed with a 2D image sensor capable of detecting spatially resolved diffuse reflectance. Quantification models were developed from simulated calibration studies where reflectance was extracted from 1 to 5 unique sensor regions of interest (ROI), followed by evaluation against test cohorts with different racial distributions. The results indicated overestimation bias in darkly pigmented subjects could be reduced through incorporation of an increasing number of sensor ROI’s. Models for quantification of bilirubin were then developed using clinical data from our mobile phone based TcB study, and increasing number of sensor ROI’s improved model performance (r2) . These results suggest promise for the development of mobile image-sensor based spatially resolved diffuse reflectance for improving accuracy and reducing racial bias in transcutaneous measurements.
Extreme or prolonged neonatal jaundice (hyperbilirubinemia) can result in permanent neurological impairment and even death. In developing countries, risk factors that increase the risk of neurodevelopmental impairment, such as sepsis, malnutrition, and certain genetic conditions are common. Administering treatments can be simple but identification of at-risk infants through visual screening is unreliable. Infants in the US are routinely screened prior to hospital discharge using transcutaneous bilirubinometry (TcB), a non-invasive technique based on diffuse reflectance. In low-resource settings such as rural sub-Saharan Africa, TcB devices are not available to traditional birth attendants and doctors; however, it is increasingly common for these personnel to carry mobile phones equipped with a camera and flash. We have previously reported initial feasibility of TcB utilizing the built-in camera and flash of the mobile phone, a Monte Carlo model driven design of a snap-on optical assembly. Here, we report the experience and results from clinical studies in newborns which compare mobile-phone based measurements of TcB with corresponding serum bilirubin levels. These results will lead to a discussion of feasibility and limitations for mobile-phone based TcB.
Infants in the US are routinely screened for risk of neurodevelopmental impairment due to neonatal jaundice using transcutaneous bilirubinometry (TcB). In low-resource settings, such as sub-Saharan Africa, TcB devices are not common, however, mobile camera-phones are now widespread. We provide an update on the development of TcB using the built-in camera and flash of a mobile phone, along with a snap-on adapter containing optical filters. We will present Monte Carlo Extreme modeling of diffuse reflectance in neonatal skin, implications in design, and refined analysis methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.