The SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) project aims to detect temperate terrestrial planets transiting nearby ultracool dwarfs, including late M-dwarf stars and brown dwarfs, which are well-suited for atmospheric characterization using the James Webb Space Telescope (JWST) and upcoming giant telescopes like the European Extremely Large Telescope (ELT). Led by the University of Liège, SPECULOOS is conducted in partnership with the University of Cambridge, the University of Birmingham, the Massachusetts Institute of Technology, the University of Bern, and ETH Zurich. The project operates a network of robotic telescopes at two main observatories: SPECULOOS-South in Chile, with four telescopes, and SPECULOOS-North in Tenerife, currently with one telescope (soon to be two). This network is complemented by the SAINT-EX telescope located in San Pedro Mártir, Mexico. In this paper, we review the status of our facilities after five years of operations, the current challenges and development plans, and our latest scientific results.
RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is to pioneer the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in the manufacturing phase for the spectrograph sub-system, and the preliminary design phase for the AO front-end. Specific developments for RISTRETTO include a novel coronagraphic IFU combining a phase-induced amplitude apodizer (PIAA) to a 3D-printed microlens array feeding a bundle of single-mode fibers. It also features an XAO system with a dual wavefront sensor aiming at high robustness and sensitivity, including to pupil fragmentation. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.
We present the photometric performance of SPIRIT, a ground-based near-infrared InGaAs CMOS-based instrument (1280 by 1024 pixels, 12 μm pitch), using on-sky results from the SPECULOOS-Southern Observatory during 2022 – 2023. SPIRIT was specifically designed to optimise time-series photometric precision for observing late M and L type stars. To achieve this, a custom wide-pass filter (0.81 – 1.33 μm, zYJ ) was used, which was also designed to minimise the effects of atmospheric precipitable water vapour (PWV) variability on differential photometry. Additionally, SPIRIT was designed to be maintenance-free by eliminating the need for liquid nitrogen for cooling. We compared SPIRIT’s performance with a deeply-depleted (2048 by 2048 pixels, 13.5 μm pitch) CCD-based instrument (using an I+z’ filter, 0.7 – 1.1 μm) through simultaneous observations. For L type stars and cooler, SPIRIT exhibited better photometric noise performance compared to the CCD-based instrument. The custom filter also significantly minimised red noise in the observed light curves typically introduced by atmospheric PWV variability. In SPIRIT observations, the detector’s read noise was the dominant limitation, although in some cases, we were limited by the lack of comparison stars.
Does life exist outside our Solar System? A first step towards searching for life outside our Solar System is detecting life on Earth by using remote sensing applications. One powerful and unambiguous biosignature is the circular polarization resulting from the homochirality of biotic molecules and systems. We aim to investigate the possibility of identifying and characterizing life on Earth by using airborne spectropolarimetric observations from a hot air balloon during our field campaign in Switzerland, May 2022. In this proceeding we present the optical-setup and the data obtained from aerial circular spectropolarimetric measurements of farmland, forests, lakes and urban sites. We make use of the well-calibrated FlyPol instrument that measures the fractionally induced circular polarization (V /I) of (reflected) light with a sensitivity of < 10−4 . The instrument operates in the visible spectrum, ranging from 400 to 900 nm. We demonstrate the possibility to distinguish biotic from abiotic features using circular polarization spectra and additional broadband linear polarization information. We review the performance of our optical-setup and discuss potential improvements. This sets the requirements on how to perform future airborne spectropolarimetric measurements of the Earth’s surface features from several elevations.
Many biologically produced chiral molecules such as amino acids and sugars show a preference for left or right handedness (homochirality). Light reflected by biological materials such as algae and leaves therefore exhibits a small amount of circular polarization that strongly depends on wavelength. Our Life Signature Detection polarimeter (LSDpol) is optimized to measure these signatures of life. LSDpol is a compact spectropolarimeter concept with no moving parts that instantaneously measures linear and circular polarization averaged over the field of view with a sensitivity of better than 10-4. We expect to launch the instrument into orbit after validating its performance on the ground and from aircraft. LSDpol is based on a spatially varying quarter-wave retarder that is implemented with a patterned liquid-crystal. It is the first optical element to maximize the polarimetric sensitivity. Since this pattern as well as the entrance slit of the spectrograph have to be imaged onto the detector, the slit serves as the aperture, and an internal field stop limits the field of view. The retarder’s fast axis angle varies linearly along one spatial dimension. A fixed quarter-wave retarder combined with a polarization grating act as the disperser and the polarizing beam-splitter. Circular and linear polarization are thereby encoded at incompatible modulation frequencies across the spectrum, which minimizes the potential cross-talk from linear into circular polarization.
SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest (< 40 pc) ultracool (< 3000K) dwarf stars. The project's main motivation is to discover potentially habitable planets well-suited for detailed atmospheric characterisation with upcoming giant telescopes, like the James Webb Space Telescope (JWST) and European Large Telescope (ELT). The project is based on a network of 1m robotic telescopes, namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in Tenerife, and the SAINTEx telescope in San Pedro Martir, Mexico. The prototype survey of the SPECULOOS project on the 60 cm TRAPPIST telescope (Chile) discovered the TRAPPIST-1 system, composed of seven temperate Earth-sized planets orbiting a nearby (12 pc) Jupiter-sized star. In this paper, we review the current status of SPECULOOS, its first results, the plans for its development, and its connection to the Transiting Exoplanet Survey Satellite (TESS) and JWST.
We present the design of a point-and-shoot non-imaging full-Stokes spectropolarimeter dedicated to detecting life on Earth from an orbiting platform like the ISS. We specifically aim to map circular polarization in the spectral features of chorophyll and other biopigments for our planet as a whole. These non-zero circular polarization signatures are caused by homochirality of the molecular and supramolecular configurations of organic matter, and are considered the most unambiguous biomarker. To achieve a fully solid-state snapshot design, we implement a novel spatial modulation that completely separates the circular and linear polarization channels. The polarization modulator consists of a patterned liquid-crystal quarter-wave plate inside the spectrograph slit, which also constitutes the first optical element of the instrument. This configuration eliminates cross-talk between linear and circular polarization, which is crucial because linear polarization signals are generally much stronger than the circular polarization signals. This leads to a quite unorthodox optical concept for the spectrograph, in which the object and the pupil are switched. We discuss the general design requirements and trade-offs of LSDpol (Life Signature Detection polarimeter), a prototype instrument that is currently under development.
We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ~1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared (K-mag ≤ 12.5) to possibly enable the atmospheric characterization of temperate terrestrial planets with next-generation facilities like the James Webb Space Telescope. The ultimate goals of the project are to reveal the frequency of temperate terrestrial planets around the lowest-mass stars and brown dwarfs, to probe the diversity of their bulk compositions, atmospheres and surface conditions, and to assess their potential habitability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.